

UNIT - 3
FUNCTIONS

Functions C Programming

Functions
 Until now, in all the C programs that we have written, the program consists of a main
function and inside that we are writing the logic of the program. The disadvantage of this method is,
if the logic/code in the main function becomes huge or complex, it will become difficult to debug the
program or test the program or maintain the program. So, generally while writing the programs, the
entire logic is divided into smaller parts and each part is treated as a function. This type of approach
for solving the given problems is known as Top Down approach. The top-down approach of solving
the given problem can be seen below:

Definition: A function is a self contained block of code that performs a certain task/job. For example,
we can write a function for reading an integer or we can write a function to add numbers from 1 to
100 etc.
 Generally a function can be imagined like a Black Box, which accepts data input and
transforms the data into output results. The user knows only about the inputs and outputs. User has
no knowledge of the process going on inside the box which converts the given input into output. This
can be seen diagrammatically as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 2

Functions C Programming

Types of Functions
 Based on the nature of functions, they can be divided into two categories. They are:

1. Predefined functions / Library functions
2. User defined functions

Predefined functions / Library functions
 A predefined function or library function is a function which is already written by another
developer. The users generally use these library functions in their own programs for performing the
desired task. The predefined functions are available in the header files. So, the user has to include
the respective header file to use the predefined functions available in it.
 For example, the printf function which is available in the stdio.h header file is used for
printing information onto the console. Other examples of predefined functions are: scanf, gets, puts,
getchar, putchar, strlen, strcat etc.

User defined functions
 A user defined function is a function which is declared and defined by the user himself.
While writing programs, if there are no available library functions for performing a particular task,
we write our own function to perform that task. Example for user defined function is main function.

Need for functions
 Functions have many advantages in programming. Almost all the languages support the
concept of functions in some way. Some of the advantages of writing/using functions are:

1. Functions support top-down modular programming.
2. By using functions, the length of the source code decreases.
3. Writing functions makes it easier to isolate and debug the errors.
4. Functions allow us to reuse the code.

Functions Terminology

Creating functions
 For creating functions in C programs, we have to perform two steps. They are: 1) Declaring
the function and 2) Defining the function.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 3

Functions C Programming

Declaring functions
The function declaration is the blue print of the function. The function declaration can also

be called as the function’s prototype. The function declaration tells the compiler and the user about
what is the function’s name, inputs and output(s) of the function and the return type of the function.
The syntax for declaring a function is shown below:

Example:

 In the above example, readint is the name of the function, int is the return type of the
function. In our example, readint function has no parameters. The parameters list is optional. The
functions are generally declared in the global declaration section of the program.

Defining functions
 The function definition specifies how the function will be working i.e the logic of the function
will be specified in this step. The syntax of function definition is shown below:

In the above syntax the return-type can be any valid data type in C like: int, float, double,
char etc. The func-name is the name of the function and it can be any valid identifier. The
parameters list is optional. The local variables are the variables which belong to the function only.
They are used within the body of the function, not outside the function. The return is a keyword in
C. It is an unconditional branch statement. Generally, the return statement is used to return a value.

Example:

In the above example, readint is the name of the function, int is the return type. The
identifier num is a local variable with respect to readint function. The above function is reading an
integer from the keyboard and returning that value back with the help of the return statement.

return-type function-name(parameters list);

int readint();

return-type func-name(parameters list…)

{

 local variable declarations;

 return(expression);

}

int readint()
{
 int num;
 printf(“Enter a number: “);
 scanf(“%d”,&num);
 return num;
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 4

Functions C Programming

Note: Care must be taken that the return type of the function and the data type of the value returned
by the return statement must match with one another.

Using Functions
 After declaring and defining the functions, we can use the functions in our program. For
using the functions, we must call the function by its name. The syntax for calling a function is as
shown below:

The function name along with the parameters list is known as the function signature. Care
must be taken that while calling the method, the syntax of the function call must match with the
function signature. Let’s see an example for function call:

Example:

Whenever the compiler comes across a function call, it takes the control of execution to the

first statement in the function’s definition. After the completion of function i.e., whenever the
compiler comes across the return statement or the closing brace of the function’s body, the control
will return back to the next statement after the function call. Let’s see this in the following example:

function-name(parameters list);

readint();

main()

{

 int x;

 x = readint();

 printf(“Value of x is: %d”, x);

}

int readint()
{
 int num;

 printf(“Enter a number: “);

 scanf(“%d”,&num);

 return num;
}

User
defined
functions

Function Call or

Calling function

Called function

Function
Definition

printf and scanf are predefined functions

P. S. Suryateja startertutorials.com [short domain - stuts.me] 5

Functions C Programming

Calling function and Called function
 The point at which the function is being invoked or called is known as the calling function.
The function which is being executed due to the function call is known as the called function.
Example for both calling function and the called function is given in the above example.

Formal Parameters and Actual Parameters
 A parameter or argument is data which is taken as input or considered as additional
information by the function for further processing. There are two types of parameters or arguments.
The parameters which are passed in the function call are known as actual parameters or actual
arguments. The parameters which are received by the called function are known as formal
parameters or formal arguments. Example is shown below:

In the above example, x and y are known as actual parameters and a and b are known as

formal parameters. In the above code, we can see that the return type of the function add is void.
This is a keyword in C. The void keyword is a datatype. If the function does not return any value, we
specify the data type void. Generally void means nothing / no value.

Note: The formal parameters and actual parameters can have the same names i.e., if the actual
parameters are x and y, then the formal parameters can also be x and y. But, it is recommended to
use different names for actual and formal parameters.

Classification of Functions
 Based on the parameters and return values, functions can be categorized into four types.
They are:

1. Function without arguments and without return value.
2. Function without arguments and with return value.
3. Function with arguments and with return value.
4. Function with arguments and without return value.

main()

{

 int x = 10, y = 20;

 add(x, y);

}

void add(int a, int b)

{

 printf(“Sum is: %d”,(a+b));

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 6

Functions C Programming

Function without arguments and without return value
 In this type of functions there are no parameters/arguments in the function definition and
the function does not return any value back to the calling function. Generally, these types of
functions are used to perform housekeeping tasks such as printing some characters etc.
Example:

In the above example, printstars function does not have any parameters. Its task is to print
20 stars whenever it is called in a program. Also printstars function does not return any value back.

Function without arguments and with return value
 In this type of functions, the function definition does not contain arguments. But the
function returns a value back to the point at which it was called. An example for this type of function
is given below:

Example:

In the above example, readint function has no parameters/arguments. The task of this
function is to read a integer from the keyboard and return back to the point at which the function
was called.

void printstars()

{

 int i;

 for(i = 0; i < 20; i++)

 {

 printf(“ * ”);

 }

 return;

}

int readint()

{

 int num;

 printf(“Enter a number: “);

 scanf(“%d”,&num);

 return num;

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 7

Functions C Programming

Function with arguments and with return value
 In this type of functions, the function definition consists of parameters/arguments. Also,
these functions returns a value back to the point at which the function was called. These types of
functions are the most frequently used in programming. An example for this type of function can be
seen below:

Example:

In the above example, the function add consists of two arguments or parameters x and y. The
function adds both x and y and returns that value stored in the local variable result back to the point
at which the function was called.

Predefined / Library Functions
 A function is said to be a predefined function or library function, if they are already declared
and defined by another developer. These predefined functions will be available in the library header
files. So, if we want to use a predefined function, we have to include the respective header file in our
program. For example, if we want to use printf function in our program, we have to include the
stdio.h header file, as the function printf has been declared inside it.

Some of the header files in C are:

int add(int x, int y)

{

 int result;

 result = x + y;

 return result;

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 8

Functions C Programming

Some of the predefined functions available in ctype.h header file are:

Some of the predefined functions available in math.h header file are:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 9

Functions C Programming

Some of the predefined functions in stdio.h header file are:

Some of the predefined functions in stdlib.h header file are:

Some of the predefined functions in string.h header file are:

Some of the predefined functions available in time.h header file are

P. S. Suryateja startertutorials.com [short domain - stuts.me] 10

Functions C Programming

Programs:
/* C program to demonstrate functions */
#include<stdio.h>
#include<conio.h>
int readint(); /*Function Declaration*/
main()
{
 int x;
 clrscr();
 x = readint();
 printf("Value of x is: %d",x);
}
int readint() /* Function Definition */
{
 int n;
 printf("Enter a integer value: ");
 scanf("%d",&n);
 return n;
}

/* C program to add numbers by using a function */
#include<stdio.h>
#include<conio.h>
int addint();
main()
{
 int sum;
 clrscr();
 sum = addint();
 printf("Sum is: %d",sum);
 getch();
}
int addint()
{
 int a,b;
 printf("Enter the values of a and b: ");
 scanf("%d%d",&a,&b);
 return a+b;
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 11

Functions C Programming

/* C program to print 200 stars using a function */
#include<stdio.h>
#include<conio.h>
void printstars();
main()
{
 clrscr();
 printstars();
 getch();
}
void printstars()
{
 int i;
 for(i = 0; i < 200; i++)
 {
 printf("* ");
 }
}

/* C program to add two numbers by using a function with parameters */
#include<stdio.h>
#include<conio.h>
int addint(int x, int y);
main()
{
 int a, b, sum;
 clrscr();
 printf("Enter the values of a and b: ");
 scanf("%d%d",&a,&b);
 sum = addint(a, b);
 printf("Sum is: %d", sum);
 getch();
}
int addint(int x, int y)
{
 return x + y;
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 12

Functions C Programming

/* C program to print n number of stars using a function */
#include<stdio.h>
#include<conio.h>
void printstars(int n);
main()
{
 int n;
 clrscr();
 printf("Enter the value of n: ");
 scanf("%d",&n);
 printstars(n);
 getch();
}
void printstars(int n)
{
 int i;
 for(i = 0; i < n; i++)
 {
 printf("* ");
 }
}

/* C program to find whether the given number is even or odd using a function
*/
#include<stdio.h>
#include<conio.h>
void evenodd(int x);
main()
{
 int n;
 clrscr();
 printf("Enter a number: ");
 scanf("%d",&n);
 evenodd(n);
 getch();
}
void evenodd(int x)
{
 if(x % 2 == 0)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 13

Functions C Programming

 {
 printf("Entered number is even");
 }
 else
 {
 printf("Entered number is odd");
 }
}

/* C program to find the factorial of a given number using a function */
#include<stdio.h>
#include<conio.h>
void factorial(int x);
main()
{
 int n;
 clrscr();
 printf("Enter the value of n: ");
 scanf("%d",&n);
 factorial(n);
}
void factorial(int x)
{
 int i, fact = 1;
 if(x == 0)
 {
 printf("Factorial of 0 is: 1");
 }
 else
 {
 for(i = 1; i <= x; i++)
 {
 fact = fact * i;
 }
 printf("Factorial of %d is : %d", x, fact);
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 14

Functions C Programming

/* C program to generate the first n terms of the Fibonacci sequence using a
function*/
#include<stdio.h>
#include<conio.h>
void fib(int n);
main()
{
 int number;
 clrscr();
 printf("Enter the number of terms: ");
 scanf("%d",&number);
 fib(number);
 getch();
}
void fib(int n)
{
 int i;
 int a = 0,b = 1,temp = 0;
 if(n == 1)
 {
 printf("%d",0);
 }
 else if(n == 2)
 {
 printf("%d %d ",0,1);
 }
 else
 {
 printf("%d %d ",a,b);
 for(i = 2; i < n; i++)
 {
 temp = a+b;
 a = b;
 b = temp;
 printf("%d ",b);
 }
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 15

Functions C Programming

Nested Functions
 A function calling another function within its function definition is known as a nested
function. So, far we are declaring a main function and calling other user-defined functions and
predefined functions like printf, scanf, gets, puts etc., So, main function can be treated as a nested
function. Let’s see the following example:

In the above example, the main function is calling three functions namely: clrscr, func1 and
getch. So, main is a nested function. Also, in the definition of func1, it is calling another function
func2. So, func1 is also a nested function.

Note: In programs containing nested functions, the enclosing or outer function returns back only
when all the inner functions complete their task.

Program:

/* C program to demonstrate a nested function */
#include<stdio.h>
#include<conio.h>
int i;
void func1();
void func2();
main()
{
 clrscr();
 func1();
 getch();
}
void func1()

main()
{
 clrscr();
 func1();
 getch();
}
void func1()
{
 for(i = 1; i<= 10; i++)
 {
 func2();
 }
}
void func2()
{
 printf("%d\n",i);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 16

Functions C Programming

{
 for(i = 1; i<= 10; i++)
 {
 func2();
 }
}
void func2()
{
 printf("%d\n",i);
}

Recursion
 A function is said to be recursive, if a function calls itself within the function’s definition.
Let’s see the following example:

In the above example, func1 is calling itself in the last line of its definition. When we write
recursive functions, the function only returns back to the main program when all the recursive calls
return back.

Note: When writing recursive functions, proper care must be taken that the recursive calls return a
value back at some point. Otherwise, the function calls itself infinite number of times.

Program:

/* C Program to demostrate recursion */
#include<stdio.h>
#include<conio.h>
void func1();
main()
{

void func1()

{

 int i = 0;

 i++;

 printf("%d\n",i);

 func1(); /*Recursive Call */

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 17

Functions C Programming

 clrscr();
 func1();
 getch();
}
void func1()
{
 int i = 0;
 i++;
 printf("%d\n",i);
 func1();
}

/* C program to find the factorial of a given number using a recursive function
*/
#include<stdio.h>
#include<conio.h>
int factorial(int x);
main()
{
 int n, fact;
 clrscr();
 printf("Enter the value of n: ");
 scanf("%d",&n);
 fact = factorial(n);
 printf("Factorial of %d is: %d", n, fact);
}
int factorial(int x)
{
 if(x == 0)
 {
 return 1;
 }
 else
 {
 return x*factorial(x-1);
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 18

Functions C Programming

/* C program to generate the first n terms of the Fibonacci sequence using a
recursive function*/
#include<stdio.h>
#include<conio.h>
int fib(int n);
main()
{
 int i, number;
 clrscr();
 printf("Enter the number of terms: ");
 scanf("%d",&number);
 if(number == 1)
 {
 printf("0");
 }
 else if(number == 2)
 {
 printf("0 1");
 }
 else
 {
 printf("0 1 ");
 for(i = 3; i <= number; i++)
 {
 printf("%d ", fib(i));
 }
 }
 getch();
}
int fib(int n)
{
 int i, temp;
 if(n == 1)
 {
 return 0;
 }
 else if(n == 2)
 {
 return 1;
 }

P. S. Suryateja startertutorials.com [short domain - stuts.me] 19

Functions C Programming

 else
 {
 temp = fib(n-1) + fib(n-2);
 return temp;
 }
}

Types of Variables
 A variable is a memory location inside memory which is referred using a name. The value
inside a variable changes throughout the execution of the program. Based on where the variable is
declared in the program, variables can be divided into two types. They are:

1. Local Variables
2. Global Variables

Local Variables
 A variable is said to be a local variable if it is declared inside a function or inside a block. The
scope of the local variable is within the function or block in which it was declared. A local variable
remains in memory until the execution of the function or block in which it was declared in
completes. Let’s see the following example:

In the above example, the variable x is a local variable with respect to the main function. Variable x
is not accessible outside main function and x remains in the memory until the execution of the main
function completes.

Global Variables
 A variable is said to be a global variable if it is declared outside all the functions in the
program. A global variable can be accessed throughout the program by any function. A global
variable remains in the memory until the program terminates. In a multi-file program, a global can
be accessed in other files wherever the variable is declared with the storage class extern.

main()

{

 int x;

 printf(“x = %d”,x);

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 20

Functions C Programming

Types of variables and their scope and lifetime can be summarized as shown below:

Type of Variable Declaration
Location

Scope
(Visibility)

Lifetime
(Alive)

Local Variable Inside a function/block Within the
function/block

Until the
function/block

completes

Global Variable Outside a function/block
Within the file and
other files marked

with extern

Until the program
terminates

Program

/* C program to demonstrate local and global variables */
#include<stdio.h>
#include<conio.h>
int g = 10;
main()
{
 int x = 20;
 clrscr();
 printf("Inside main, g = %d",g);
 printf("\nInside main, x = %d",x);
 {
 int y = 30;
 printf("\nInside block, g = %d",g);
 printf("\nInside block, y = %d",y);
 printf("\nInside block, x = %d",x);
 }
 printf("\nOutside block, g = %d",g);
 /*printf("Outside block, y = %d",y);*/
 printf("\nOutside block, x = %d",x);
 getch();
}

In the above example, g is a global variable and x is a local variable with respect to main and y is a
local variable within the block. The variable y cannot be accessed outside the block. That is why the
printf statement outside the block accessing the value of the variable y has been commented out.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 21

Functions C Programming

Storage Classes
 The storage classes specify the scope and lifetime of a variable in a C program. The scope
(active) specifies in which parts of the program is the variable accessible and the lifetime (alive)
specifies how long a variable is available in the memory so that the program will be able to access
that variable. There are four storage classes in C. They are:

1. auto
2. register
3. extern
4. static

The storage classes’ auto, register and static can be applied to local variables and the storage
classes’ extern and static can be applied to global variables.

auto
 When a variable is declared with the storage class auto, the variable’s scope is within the
function or block in which it is declared and the lifetime is until the function or block in which it is
declared completes. Syntax for declaring auto variable is shown below:

In any program, if a local variable is declared without any storage class then it is automatically set to
auto storage class.

register
 When a variable is declared with the storage class register, the variable will be stored inside
one of the registers of the CPU. The registers are under the direct control of CPU. So, data inside the
register can be processed at a faster rate than the data that resides in the main memory. For a
program to execute faster, it is always best to store the most frequently used data inside register.
The scope and lifetime of a register variable is same as that of a auto variable. Syntax for declaring a
register variable is as shown below:

extern
 The extern storage class specifies that the variable is declared in some part of the program.
Generally this storage class is used to refer global variables in a program. Note that extern variables
cannot be initialized. The scope of a extern variable is throughout the entire program and the
lifetime is until the program completes its execution.
 In a multi-file program, a global variable in one file can be accessed from another file by
using the storage class extern. Syntax for declaring a extern variable is as shown below:

static
 The static storage class can be applied to both local variables and global variables. The static
local variables are accessible only within the function or block in which they are declared, but their
lifetime is throughout the program. The static global variables are accessible throughout the file in
which they are declared but not in other files. Syntax for declaring static variable is shown below:

auto datatype variablename;

register datatype variablename;

extern datatype variablename;

static datatype variablename;

P. S. Suryateja startertutorials.com [short domain - stuts.me] 22

Functions C Programming

The four storage classes can be summarized as shown below:

Storage Class Declaration
Location

Scope
(Visibility)

Lifetime
(Alive)

auto Inside a function/block Within the
function/block

Until the function/block
completes

register Inside a function/block Within the
function/block

Until the function/block
completes

extern Outside all functions
Entire file plus other

files where the variable
is declared as extern

Until the program
terminates

static
(local) Inside a function/block Within the

function/block
Until the program

terminates

static
(global) Outside all functions Entire file in which it is

declared
Until the program

terminates

Note: The extern variables cannot be initialized. The default value for static variables is zero.

Programs:

/* C program to demostrate auto storage class */
#include<stdio.h>
#include<conio.h>
void func1();
main()
{
 /* x is local variable with respect to main function */
 auto int x;
 clrscr();
 x = 20;
 printf("\nValue of x is: %d",x);
 func1();
 getch();
}
void func1()
{
 /*Since x is a auto or local variable of function main, it is not
 accessible in func1*/
 x = 10;
 printf("\nValue of x is: %d",x);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 23

Functions C Programming

/* C program to demostrate register storage class */
#include<stdio.h>
#include<conio.h>
void printx();
main()
{
 clrscr();
 printx();
 getch();
}
void printx()
{
 register int i;
 for(i = 1;i <= 10000;i++)
 {
 printf("%d ",i);
 }
}

/* C program to demostrate global variables */
#include<stdio.h>
#include<conio.h>
int x;
void func1();
void func2();
void func3();
main()
{
 clrscr();
 x = 10;
 printf("x = %d\n",x);
 func1();
 printf("x = %d\n",x);
 func2();
 printf("x = %d\n",x);
 func3();
 printf("x = %d\n",x);
 getch();

P. S. Suryateja startertutorials.com [short domain - stuts.me] 24

Functions C Programming

}
void func1()
{
 x++;
}
void func2()
{
 x++;
}
void func3()
{
 int x = 10;
}

/* C program to demostrate extern storage class */
#include<stdio.h>
#include<conio.h>
void func1();
void func2();
void func3();
main()
{
 extern int x;
 clrscr();
 x = 10;
 printf("x = %d\n",x);
 func1();
 printf("x = %d\n",x);
 func2();
 printf("x = %d\n",x);
 func3();
 printf("x = %d\n",x);
 getch();
}
void func1()
{
 extern int x;
 x++;

P. S. Suryateja startertutorials.com [short domain - stuts.me] 25

Functions C Programming

}
int x;
void func2()
{
 x++;
}
void func3()
{
 int x = 10;
 x++;
}

/* C program to demostrate extern storage class in multiple files */
#include<stdio.h>
#include<conio.h>
#include"extf2.c"
int x;
main()
{
 x = 10;
 func1();
 func2();
 getch();
}

/* C program to demostrate extern storage class in multiple files */
void func1()
{
 extern int x;
 printf("\nx = %d",x);
}
void func2()
{
 int x = 20;
 printf("\nx = %d",x);
}

extf1.c

extf2.c

P. S. Suryateja startertutorials.com [short domain - stuts.me] 26

Functions C Programming

/* C program to demostrate static storage class - local variables */
#include<stdio.h>
#include<conio.h>
int count();
main()
{
 clrscr();
 printf("Value is: %d\n",count());
 printf("Value is: %d\n",count());
 printf("Value is: %d\n",count());
 getch();
}
int count()
{
 static int x = 0;
 x++;
 return x;
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 27

Functions C Programming

/* C program to demostrate static storage class - global variables */
#include<stdio.h>
#include<conio.h>
#include"statg2.c"
static int x;
void func1();
main()
{
 x = 10;
 printf("x = %d\n",x);
 func1();
 func2();
}
void func1()
{
 x++;
 printf("x = %d\n",x);
}

/* C program to demonstrate static storage class - global variables */

void func2()
{
 x++;
 printf("x = %d\n",x);
}

statg1.c

statg2.c

P. S. Suryateja startertutorials.com [short domain - stuts.me] 28

Functions C Programming

Passing arrays to functions

Passing one-dimensional arrays
 We can also pass arrays as parameters to the called function. While passing one-dimensional
array to a function, you should follow three rules. They are:

1. In the function declaration you should write a pair of square brackets [] beside the name of
the array. No need to specify the size of the array.

2. In the function definition you should write a pair of square brackets [] beside the name of
the array. Again no need to specify the size of the array.

3. In the function call, it is enough to just pass the array name as the actual parameter. No
need to write the square brackets after the array name.

When an array is passed as an actual parameter, the formal parameter also refers to the same array
which is passed as an actual parameter. When passing an array as a parameter, you are passing the
address of the array, not the values in the array. So, if you make changes in the array using the
formal name of the array, the changes are also reflected on the actual array.

Programs:

/* C program to find the largest number in a group of numbers using a function
*/
#include<stdio.h>
#include<conio.h>
void largest(int a[], int n);
main()
{
 int a[5], i;
 clrscr();
 for(i = 0; i < 5; i++)
 {
 printf("Enter a[%d]: ",i+1);
 scanf("%d",&a[i]);
 }
 largest(a,5);
 getch();
}
void largest(int a[], int n)
{
 int i, max;
 max = a[0];
 for(i = 1; i < n; i++)
 {
 if(max<a[i])
 {

P. S. Suryateja startertutorials.com [short domain - stuts.me] 29

Functions C Programming

 max = a[i];
 }
 }
 printf("The largest number is: %d",max);
}

/* C program to find the smallest number in a group of numbers using a
function */
#include<stdio.h>
#include<conio.h>
void smallest(int a[], int n);
main()
{
 int a[5], i;
 clrscr();
 for(i = 0; i < 5; i++)
 {
 printf("Enter a[%d]: ",i+1);
 scanf("%d",&a[i]);
 }
 smallest(a,5);
 getch();
}
void smallest(int a[], int n)
{
 int i, min;
 min = a[0];
 for(i = 1; i < n; i++)
 {
 if(min>a[i])
 {
 min = a[i];
 }
 }
 printf("The smallest number is: %d",min);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 30

Functions C Programming

Passing two-dimensional arrays
 We can also pass two-dimensional arrays as parameters to a function. While passing two-
dimensional arrays as parameters you should keep in mind the following things:

1. In the function declaration you should write two sets of square brackets after the array
name. You should specify the size of the second dimension i.e., the number of columns.

2. In the function call you should write two sets of square brackets after the array name. Also
you should specify the size of the second dimension i.e., the number of columns.

3. In the function call, it is enough to pass the name of the array as a parameter. No need to
mention the square brackets.

Program:

/* C program to pass a two dimensional array as a parameter to a function */
#include<stdio.h>
#include<conio.h>
void printmatrix(int a[][3],int m,int n);
main()
{
 int a[3][3],i,j;
 clrscr();
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("Enter a[%d][%d]: ",i,j);
 scanf("%d",&a[i][j]);
 }
 }
 printmatrix(a,3,3);
 getch();
}
void printmatrix(int a[][3],int m,int n)
{
 int i, j;
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("%d ",a[i][j]);
 }
 printf("\n");
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 31

Functions C Programming

/*C program to insert a sub-string into a string at a specified position*/
#include<stdio.h>
#include<conio.h>
#include<string.h>
void strinst(char x[],char y[], int loc);
main()
{
 char str[20], substr[20];
 int pos;
 clrscr();
 printf("Enter the string: ");
 gets(str);
 printf("Enter the substring: ");
 gets(substr);
 printf("Enter the position number: ");
 scanf("%d",&pos);
 strinst(str, substr, pos);
 getch();
}
void strinst(char x[],char y[], int loc)
{
 char result[40];
 int i, j, k;
 for(i=0; i<loc; i++)
 {
 result[i] = x[i];
 }
 for(j=0, k=i; j<strlen(y); j++, k++)
 {
 result[k] = y[j];
 }
 for(k=i+strlen(y); k<strlen(x)+strlen(y); k++,i++)
 {
 result[k] = x[i];
 }
 result[k] = '\0';
 puts(result);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 32

Functions C Programming

/* C program to delete n characters from the specified position in a string */
#include<stdio.h>
#include<conio.h>
#include<string.h>
void strdel(char x[],int num,int loc);
main()
{
 char str[20];
 int n, pos;
 clrscr();
 printf("Enter a string: ");
 gets(str);
 printf("How many characters you want to delete? ");
 scanf("%d",&n);
 printf("Enter the position: ");
 scanf("%d",&pos);
 strdel(str,n,pos);
 getch();
}
void strdel(char x[],int num,int loc)
{
 char result[20];
 int i,j;
 for(i=0; i<loc; i++)
 {
 result[i] = x[i];
 }
 for(j=i,i=i+num; j<(strlen(x)-num); j++,i++)
 {
 result[j] = x[i];
 }
 result[j] = '\0';
 puts(result);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 33

Functions C Programming

/*C program to replace a character at beginning or ending or at the specified
location in a string */
#include<stdio.h>
#include<conio.h>
#include<string.h>
void strrepb(char x[], char c);
void strrepe(char x[], char c);
void strrep(char x[], char c, char loc);
main()
{
 char str[10], ch;
 int choice, pos;
 /*clrscr();*/
 printf("Enter a string: ");
 gets(str);
 while(1)
 {
 printf("1. Replace a character at the begining of the string\n");
 printf("2. Replace a character at the ending of the string\n");
 printf("3. Replace a cahracter at specific position\n");
 printf("4. Exit\n");
 printf("Enter your choice: ");
 scanf("%d",&choice);
 switch(choice)
 {
 case 1:
 fflush(stdin);
 printf("Enter the character: ");
 scanf("%c",&ch);
 strrepb(str, ch);
 break;
 case 2:
 fflush(stdin);
 printf("Enter the character: ");
 scanf("%c",&ch);
 strrepe(str, ch);
 break;
 case 3:
 printf("Enter the position: ");
 scanf("%d",&pos);

P. S. Suryateja startertutorials.com [short domain - stuts.me] 34

Functions C Programming

 fflush(stdin);
 printf("Enter the character: ");
 scanf("%c",&ch);
 strrep(str, ch, pos);
 break;
 case 4:
 exit(0);
 default:
 printf("Invalid option. Try again...\n");
 break;
 }
 }
}
void strrepb(char x[], char c)
{
 x[0] = c;
 puts(x);
 printf("\n");
}
void strrepe(char x[], char c)
{
 x[strlen(x)-1] = c;
 puts(x);
}
void strrep(char x[], char c, char loc)
{
 x[loc-1] = c;
 puts(x);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 35

Functions C Programming

Preprocessor Directives
 C provides many features like structures, unions and pointers. Another unique feature of the
C language is the preprocessor. The C preprocessor provides several tools that are not present in
other high-level languages. The programmer can use these tools to make his program easy to read,
easy to modify, portable and more efficient.
 The preprocessor is a program that processes the source code before it passes through the
compiler. Preprocessor directives are placed in the source program before the main line. Before the
source code passes through the compiler, it is examined by the preprocessor for any preprocessor
directives. If there are any, appropriate actions are taken and then the source program is handed
over to the compiler.
 All the preprocessor directives follow special syntax rules that are different from the normal
C syntax. Every preprocessor directive begins with the symbol # and is followed by the respective
preprocessor directive. The preprocessor directives are divided into three categories. They are:

1. Macro Substitution Directives
2. File Inclusion Directives
3. Compiler Control Directives

Macro Substitution Directives
 Macro substitution is a process where an identifier in a program is replaced by a predefined
string composed of one or more tokens. The preprocessor accomplishes this task under the direction
of #define statement. This statement, usually known as a macro definition takes the following form:

If this statement is included in the program at the beginning, then the preprocessor replaces
every occurrence of the identifier in the source code by the string.
Note: Care should be taken that there is no space between the # and the word define. Also there
should be atleast a single space between #define and the identifier and between the identifier and
the string. Also, there will be no semi-colon at the end of the statement.
There are different forms of macro substitution. The most common are:

1. Simple macro substitution
2. Argumented macro substitution
3. Nested macro substitution

Simple Macro Substitution
 The simple macro substitutions are generally used for declaring constants in a C program.
Some valid examples for simple macro substitution are:

Whenever the preprocessor comes across the simple macros, the identifier will be replaced with the
corresponding string. For example, in a C program, all the occurrences of PI will be replaced with
3.1412.

Argumented Macro Substitution
 The preprocessor allows us to define more complex and more useful form of substitutions.
The Argumented macro substitution takes the following form:

#define identifier string

#define PI 3.1412
#define MAX 100
#define START main() {
#define STOP }

#define identifier(arg1, arg2, ….. , argn) string

P. S. Suryateja startertutorials.com [short domain - stuts.me] 36

Functions C Programming

Care should be taken that there is no space between the identifier and the left parentheses.

The identifiers arg1, arg2, …. , argn are the formal macro arguments that are analogous to the formal
arguments in a function definition. In the program, the occurrence of a macro with arguments is
known as a macro call. When a macro is called, the preprocessor substitutes the string, replacing the
formal parameters with actual parameters.
For example, if the Argumented macro is declared as shown below:

and the macro is called as shown below:

Then the preprocessor will expand the above statement as:

Nested Macro Substitution
We can use one macro inside the definition of another macro. Such macros are known as

nested macros. Example for a nested macro is shown below:

Programs
/* C program to demonstrate simple macro substitution */
#include<stdio.h>
#include<conio.h>
#define MAX 100
main()
{
 int n;
 clrscr();
 printf("Enter the value of n: ");
 scanf("%d",&n);
 if(n < MAX)
 {
 printf("%d is less than MAX",n);
 }
 else
 {
 printf("%d is greater than MAX",n);
 }
 getch();
}
/* C program to demonstrate argumented macro substitution */
#include<stdio.h>

#define CUBE(x) (x*x*x)

volume = CUBE(side);

volume = (side * side * side);

#define SQUARE(x) x*x

#define CUBE(x) SQUARE(x) * x

P. S. Suryateja startertutorials.com [short domain - stuts.me] 37

Functions C Programming

#include<conio.h>
#define SQUARE(x) x*x
main()
{
 int i;
 clrscr();
 for(i = 1; i <= 10; i++)
 {
 printf("%d\n",SQUARE(i));
 }
 getch();
}

/* C program to demonstrate nested macro substitution */
#include<stdio.h>
#include<conio.h>
#define SQUARE(x) x*x
#define AREA(x) 3.14*SQUARE(x)
main()
{
 int r;
 clrscr();
 printf("Enter the radius: ");
 scanf("%d",&r);
 printf("Area of the circle is: %f",AREA(r));
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 38

Functions C Programming

File Inclusion Directives
 The external files containing functions or macro definitions can be linked with our program
so that there is no need to write the functions and macro definitions again. This can be achieved by
using the #include directive. The syntax for this directive is as shown below:

We can use either of the above statements to link our program with other files. If the
filename is included in double quotes, the file is searched in the local directory. If the filename is
included in angular brackets, then the file is searched in the standard directories.

Compiler Control Directives
Following are the compiler control directives:

Directive Purpose
#ifdef Test for a macro definition
#endif Specifies the end of #if
#ifndef Tests whether a macro is not defined
#if Test a compile-time condition
#else Specifies alternative when #if fails

These compiler control directives are used in different situations. They are:

Situation 1
 You have included a file containing some macro definitions. It is not known whether a
certain macro has been defined in that header file. However, you want to be certain that the macro
is defined.
 This situation refers to the conditional definition of a macro. We want to ensure that the
macro TEST is always defined, irrespective of whether it has been defined in the header file or not.
This can be achieved as follows:

DEFINE.H is the header that is supposed to contain the definition of TEST macro. The directive
#ifndef TEST searches the definition of TEST in the header file and if it is not defined, then all the
lines between the #ifndef and the corresponding #endif directive are executed in the program.

Situation 2
 Suppose a customer has two different types of computers and you are required to write a
program that will run on both the systems. You want to use the same program, although a certain
lines of code must be different for each system.
 The main concern here is to make the program portable. This can be achieved as shown
below:

#include “filename”
OR

#include<filename>

#include”DEFINE.H”
#ifndef TEST
#define TEST 1
#endif

P. S. Suryateja startertutorials.com [short domain - stuts.me] 39

Functions C Programming

If we want to run the program on a IBM PC, we include the directive #define IBM_PC, otherwise we
won’t.

Situation 3
 You are developing a program for selling in the open market. Some customers may insist on
having certain additional features. However, you would like to have a single program that would
satisfy both types of customers.
 This situation is similar to the above situation and therefore the control directives take the
following form:

Group-A lines are included if the customer ABC is defined. Otherwise, Group-B lines are included.

Situation 4
 Suppose if you want to test a large program, you would like to include print calls in the
program in certain places to display intermediate results and messages in order to trace the flow of
execution and errors.
 For this purpose we can use #if and #else directive as shown below:

#ifdef IBM_PC
{

}
#else
{

}
#endif

#idef ABC
 Group-A lines
#else
 Group-B lines
#endif

#if constant expression
{
 Statement 1;
 Statement 2;

}
else
{
 Statement 1;
 Statement 2;

}
#endif

P. S. Suryateja startertutorials.com [short domain - stuts.me] 40

Functions C Programming

Programs

/* C program to demostrate #undef preprocessor directive */
#include<stdio.h>
#include<conio.h>
#define NAME "teja"
main()
{
 clrscr();
 puts(NAME);
 #undef NAME
 puts(NAME);
 getch();
}

/* C program to demostrate #ifdef and #endif preprocessor directives */
#include<stdio.h>
#include<conio.h>
#define MAX 100
main()
{
 clrscr();
 #ifdef MAX
 #define COUNT 10
 #endif
 printf("COUNT = %d",COUNT);
 getch();
}

/* C program to demostrate #ifndef and #endif preprocessor directives */
#include<stdio.h>
#include<conio.h>
#ifndef MAX
#define MAX 100
#endif
main()
{
 clrscr();
 printf("MAX = %d",MAX);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 41

Functions C Programming

/* C program to demostrate #if and #else preprocessor directives */
#include<stdio.h>
#include<conio.h>
#define MAX 100
main()
{
 clrscr();
 #ifdef MAX
 {
 printf("MAX is defined");
 }
 #else
 {
 printf("MAX is not defined");
 }
 #endif
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 42

Functions C Programming

ANSI Preprocessor Directives
 The ANSI committee has added some more preprocessor directives to the existing list. They
are:

Directive Purpose
#elif Provides alternative test facility
#pragma Specifies compiler instructions
#error Stops compilation when an error occurs

#elif Directive
 The #elif directive enables us to establish an “if…else…if” sequence for testing multiple
conditions. The syntax is as shown below:

#pragma Directive
 The #pragma directive is an implementation oriented directive that allows the user to
specify various instructions to be given to the compiler. Syntax is as follows:

Where name is the name of the pragma we want. For example, under Microsoft C, #pragma
loop_opt(on) causes loop optimization to be performed.

#error Directive
 The #error directive is used to produce diagnostic messages during debugging. The general
format is:

When the #error directive is encountered by the compiler, it displays the error message and
terminates the program.
Example:

#if expr1
 Stmts;
#elif expr2
 Stmts;
#elif expr3
 Stmts;
#endif

#pragma name

#error error-message

#if !defined(FILE_G)
#error NO GRAPHICS FILE
#endif

P. S. Suryateja startertutorials.com [short domain - stuts.me] 43

Functions C Programming

Preprocessor Operations

Stringizing Operator #
 ANSI C provides an operator # called stringizing operator to be used in the definition of
macro functions. This operator converts a formal argument into a string. For example, if the macro is
defined as follows:

and somewhere in the program the statement is written as: sum(a+b); then the preprocessor
converts this line as shown below:

Token Pasting Operator ##
 The token pasting operator ## defined by ANSI enables us to combine two tokens within a
macro definition to form a single token.

Programs
/*C program to demonstrate Stringizing operator # */
#include<stdio.h>
#include<conio.h>
#define sum(x) printf(#x"= %d",x);
main()
{
 int a,b;
 clrscr();
 a = 10, b = 20;
 sum(a+b);
 getch();
}

/* C program to demonstrate preprocessor directives */
#include<stdio.h>
#include<conio.h>
#define START main() {
#define STOP }
#define PRINT(x) printf(#x)
#define COMBINE(x,y,z) x##y##z
#define hai "hai"
START
 clrscr();
 printf(COMBINE(h,a,i));
 PRINT(\nhello world);
 getch();
STOP

printf(“a+b” “ = %f \n”, a+b);

#define sum(xy) printf(#xy “ = %f \n”, xy)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 44

	Functions
	Types of Functions
	Predefined functions / Library functions
	User defined functions

	Need for functions
	Functions Terminology
	Creating functions
	Declaring functions
	Defining functions

	Using Functions
	Calling function and Called function
	Formal Parameters and Actual Parameters

	Classification of Functions
	Function without arguments and without return value
	Function without arguments and with return value
	Function with arguments and with return value

	Predefined / Library Functions
	Programs:
	Nested Functions
	Program:

	Recursion
	Program:

	Types of Variables
	Local Variables
	Global Variables

	Program
	Storage Classes
	auto
	register
	extern
	static
	Programs:

	Passing arrays to functions
	Passing one-dimensional arrays
	Programs:
	Passing two-dimensional arrays
	Program:

	Preprocessor Directives
	Macro Substitution Directives
	Simple Macro Substitution
	Argumented Macro Substitution
	Nested Macro Substitution

	Programs
	File Inclusion Directives
	Compiler Control Directives
	Situation 1
	Situation 2
	Situation 3
	Situation 4

	Programs
	ANSI Preprocessor Directives
	#elif Directive
	#pragma Directive
	#error Directive

	Preprocessor Operations
	Stringizing Operator #
	Token Pasting Operator ##

	Programs

