

UNIT - 6

FILE HANDLING IN C

File Handling C Programming

File Management
 So far we have been using scanf and printf functions for reading and writing data to the
console. This is fine as long as the data is less. However, many real world problems involve large
amounts of data. In such situations, the console oriented I/O pose two major problems. They are:

1. It becomes difficult and time consuming to handle large volumes of data through console.
2. The entire data is lost when either the program is terminated or the computer is turned off.
It is therefore necessary to have a more flexible approach where data can be stored on the disks

and read whenever necessary, without destroying the data. This is achieved by using the concept of
files.
 A file is a collection of related data stored on a disk. C supports a wide range of functions
that have the ability to perform basic file operations, which include:

• Naming a file
• Opening a file
• Reading data from a file
• Writing data to a file
• Closing a file

C library provides various pre-defined functions for handling files. Some of them are listed below:

Defining and Opening a File
 If the user wants to store data or read data from a file in the secondary memory, the user
must specify certain things about the file to the operating system. They are:

1. Filename
2. Data Structure
3. Purpose

Filename is the name of the file. It is a collection of characters that make up a valid filename for the
operating system. It may contain two parts: a primary name and optional period with the etxtension.
Some valid file names are:
abc.txt
prog.c
sample.java
store

Data Structure of a file is defined a FILE in the C library. Therefore, all files should be declared as type
FILE before they are used. FILE is a predefined data type. When we open a file, we must specify the

P. S. Suryateja startertutorials.com [short domain - stuts.me] 2

File Handling C Programming

purpose. For example, we may want to write data or read data from a file. The syntax for declaring
and opening a file is:

The first statement declares the variable fp as a pointer to the data type FILE. The second statement
opens the file whose name is filename and assigns an identifier to the FILE type pointer fp. This
pointer, which contains all the information about the file is subsequently used as a communication
link between the system and the program. The mode specifies the purpose of opening the file. Mode
can be one of the following:

• r opening the file for reading data from it
• w opening the file for writing data to it
• a opening the file for appending data to it

Note that both filename and mode are specified as string. So, both of them must be enclosed within
double quotes. Some compilers support the following additional modes:

• r+ Open the existing file for both reading and writing
• w+ Open the file for both reading and writing
• a+ Open the file for both appending and reading

Note: When a file is opened in r mode, the compiler searches for the file and if the file does not exist,
nothing happens or some compilers might generate an error. When a file is opened in w mode, the
compiler searches for the file and if the file does not exist, it creates a new file with the specified
name. If the file already exists, the file is opened with the all the previous data in the file erased.

Closing a File
 A file must be closed as soon as all the operations on it have been finished. This ensures that
all information associated with the file is flushed out from the buffers and all links to the file with the
program are broken. It also prevents the accidental misuse of the file. Another case in which we
might want to close the connection with the file is, when we want to reopen the same file in a
different mode. The syntax for closing a file is as shown below:

Input/Output Operations on Files

getc and putc Functions
 The simplest I/O functions are getc and putc. These are analogous to getchar and putchar
functions and handle one character at a time. The putc function writes a character to the file
associated with a file pointer. The syntax is as shown below:

Similarly the function getc is used to read a character from a file associated with a file-pointer. The
syntax is as shown below:

FILE *fp;

fp = fopen(“filename”,”mode”);

fclose(file-pointer);

putc(ch, file-pointer);

getc(file-pointer)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 3

File Handling C Programming

 The file pointer moves by one character position for every operation of getc or putc. The
getc will return an end-of-file marker EOF, when end of the file has been reached.

getw and putw Functions
 The getw and putw are integer oriented functions. They are similar to getc and putc
functions and are used to read and write integers to and from files. These functions would be useful
when the user is dealing with integer data. The syntax for these functions is as shown below:

fprintf and fscanf Functions
 When the user need to work with mixed data, C provides two functions namely: fprintf and
fscanf. These functions are used to read and write mixed data to and from files. These two functions
are similar to printf and scanf except these two functions work on files. The syntax for these
functions is as shown below:

Error Handling During I/O Operations
 While writing programs which involve accessing files, certain errors might occur while
performing I/O operations on a file. Some of the error situations include the following:

1. Trying to read beyond the end-of-file mark.
2. Device overflow.
3. Trying to use a file that has not been opened.
4. Trying to perform an operation on a file, when the file is being use by another application.
5. Opening a file with invalid name.
6. Attempting to write to write-protected file.

If such errors are unchecked, it may lead to abnormal termination of the program or may lead to
incorrect output. C library provides two functions namely feof and ferror for handling the above
mentioned situations.
 The feof function is used to test for the end-of-file condition. It takes a file-pointer as a
parameter and returns a non-zero integer value if all of the data from the specified file has been
read, and returns zero otherwise. The syntax is as shown below:

The ferror function reports the status of the file. It takes a file-pointer as its argument and
returns a non-zero integer if an error has been detected up to that point, or returns zero otherwise.
The syntax is as shown below:

Whenever a file is opened using fopen function, a file pointer is returned. If the file cannot be
opened for some reason, the function returns a NULL pointer. This can be used to test whether the
file has been opened successfully or not. It can be used as shown below:

putw(integer, file-pointer);

getw(file-pointer);

fprintf(fp, “control strings”, var list);

fscanf(fp, “control strings”, var list);

Int feof(file-pointer)

int ferror(file-pointer)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 4

File Handling C Programming

Random Access to Files
 All the functions that we have seen so far are useful for reading and writing data
sequentially to and from a file. Sometimes the user might want to access data at random locations
from a file. For this purpose, C library provides functions namely: ftell, fseek and rewind.
 The ftell function lets the user to know the current location of the file pointer. It takes a file-
pointer as a parameter and returns a long integer that corresponds to the current position of the
pointer. Syntax is a shown below:

 The rewind function lets the user to move the file pointer again to the beginning of the file.
This function accepts a file-pointer as a parameter and resets the position to the start of the file.
This helps us in reading a file more than once, without having to close and reopen the file. Syntax is
as follows:

 The fseek function is used to move the pointer to any position within the file. This function
takes three parameters: file-pointer, offset and position. When the operation is successful, fseek
returns a non-zero value. If we attempt to move the file pointer beyond the file boundaries, an error
occurs and fseek returns a -1. Syntax is as follows:

 The offset is a number of the type long, and position is an integer number. The offset
represents the number of positions to be moved from the location specified by position. The position
can take one of the following values:

 A positive value for the offset specifies that the pointer moves forward and a negative value
for the offset specifies that the pointer moves backward from the current position. Following are
some of the example usages of the fseek function:

Statement Meaning
fseek(fp,0L,0); Go to the beginning. (Similar to rewind)
fseek(fp,0L,1); Stay at the current position
fseek(fp,0L,2); Go to the end of file
fseek(fp,-m,1); Move backward by m bytes from current position
fseek(fp,m,1); Move forward by m bytes

Value Meaning
0 Beginning of the file
1 Current Position
2 End of file

if(fp == NULL)

printf(“File cannot be opened!”);

long ftell(file-pointer)

rewind(file-pointer)

fseek(file-pointer, offset, position)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 5

File Handling C Programming

Command Line Arguments
 The parameters passed to the program when the program is invoked are known as
command line arguments. These parameters are the additional information like filename or other
kind of input to the program. By passing command line arguments there is no need for the user to
provide the input while executing the program.
 These command line arguments can be processed by using the arguments available in the
main function. The main allows two parameters namely: argc and argv. The argc represents the
argument counter which contains the number of arguments passed in the command line. The argv is
a character pointer array which points to the arguments passed in the command line.
 To know the number of command line arguments, we can use the argc parameter of the
main function and to access the individual arguments, we can use the argv array. The first element
in the argv array is always the program name. So the first argument can be accessed by using
argv[1] and so on. The main function will be as shown below:

main(int argc, char *argv[])

{

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 6

File Handling C Programming

Programs
/* C program to open and close a file */
#include<stdio.h>
#include<conio.h>
main()
{
 FILE *fp;
 fp = fopen("C:\\xyz.txt", "w");
 fclose(fp);
 getch();
}

/* C program to read data from a file */
#include<stdio.h>
#include<conio.h>
main()
{
 FILE *fp;
 char ch;
 fp = fopen("C:\\xyz.txt", "r");
 while((ch=getc(fp)) != EOF)
 {
 printf("%c",ch);
 }
 fclose(fp);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 7

File Handling C Programming

/* C program to write data to a file */
#include<stdio.h>
#include<conio.h>
main()
{
 FILE *fp;
 char ch;
 fp = fopen("C:\\xyz.txt", "w");
 while((ch = getchar()) != '\n')
 {
 putc(ch, fp);
 }
 fclose(fp);
 getch();
}

/* C program to append data to a file */
#include<stdio.h>
#include<conio.h>
main()
{
 FILE *fp;
 char ch;
 fp = fopen("C:\\xyz.txt", "a");
 while((ch = getchar()) != '\n')
 {
 putc(ch, fp);
 }
 fclose(fp);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 8

File Handling C Programming

/* C program to read numbers and write numbers to a file */
#include<stdio.h>
#include<conio.h>
main()
{
 FILE *fp;
 int i;
 clrscr();
 fp = fopen("abc.txt","w");
 for(i = 1; i <= 10; i++)
 {
 putw(i, fp);
 }
 fclose(fp);
 fp = fopen("abc.txt","r");
 while((i = getw(fp)) != EOF)
 {
 printf("%d ",i);
 }
 fclose(fp);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 9

File Handling C Programming

/* C program to read and write mixed type data into files */
#include<stdio.h>
#include<conio.h>
main()
{
 char name[20], grade;
 int age, i;
 FILE *fp;
 clrscr();
 fp = fopen("abc.txt","w");
 printf("Enter Student Details: \n");
 printf("Name\t Age\t Grade\n");
 for(i = 0; i < 3; i++)
 {
 fscanf(stdin, "%s %d %c", name, &age, &grade);
 fprintf(fp, "%s %d %c", name, age, grade);
 }
 fclose(fp);
 fp = fopen("abc.txt","r");
 printf("Student details are: \n");
 for(i = 0; i < 3; i++)
 {
 fscanf(fp, "%s %d %c", name, &age, &grade);
 fprintf(stdout, "%s %d %c\n", name, age, grade);
 }
 fclose(fp);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 10

File Handling C Programming

/* C program to demonstrate ftell, fseek and rewind functions */
#include<stdio.h>
#include<conio.h>
main()
{
 FILE *fp;
 long offset;
 char ch;
 clrscr();
 fp = fopen("abc.txt","w");
 printf("Enter some characters: ");
 while((ch=getchar())!= '\n')
 {
 putc(ch, fp);
 }
 printf("Number of characters entered is: %ld\n\n",ftell(fp));
 rewind(fp);
 printf("After rewind file pointer is at location: %ld\n\n",ftell(fp));
 fclose(fp);
 offset = 0L;
 fp = fopen("abc.txt","r");
 while(feof(fp) == 0)
 {
 fseek(fp, offset, 0);
 printf("Position of %c is %ld\n", getc(fp), ftell(fp));
 offset++;
 }
 fseek(fp, -1L, 2);
 printf("\nFile contents in reverse: \n");
 do
 {
 putchar(getc(fp));
 }
 while(!fseek(fp, -2L, 1));
 fclose(fp);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 11

File Handling C Programming

/* C program to demonstrate command line arguments */
#include<stdio.h>
#include<conio.h>
main(int argc, char *argv[])
{
 FILE *fp;
 int i;
 printf("Number of arguments is: %d\n",argc);
 fp = fopen("C:\\xyz.txt", "w");
 for(i = 1; i < argc; i++)
 {
 fprintf(fp, "%s ", argv[i]);
 }
 fclose(fp);
 printf("Data Saved!");
 getch();
}

Running the program:
C:/tc > tcc file8.c
C:/tc > file8 aaa bbb ccc ddd

aaa, bbb, ccc and ddd are the command line arguments.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 12

	File Management
	Defining and Opening a File
	Closing a File
	Input/Output Operations on Files
	getc and putc Functions
	getw and putw Functions
	fprintf and fscanf Functions

	Error Handling During I/O Operations
	Random Access to Files
	Command Line Arguments
	Programs

