

UNIT - 2

CONTROL STATEMENTS

ARRAYS

STRINGS

Control Statements, Arrays, and Strings C Programming
Decision Making Statements / Control Statements

 In C, until so far, in all the programs, the control is flowing from one instruction to next instruction. Such flow
of control from one instruction to next instruction is known as sequential flow of control. But, in most of the C
programs, while writing the logic, the programmer might want to skip some instructions or repeat a set of
instructions again and again. This is can be called as non-sequential flow of control. The statements in C, which
allows the programmers to make such decisions, are known as decision making statements or control statements.
 In C, there are two types of decision making statements. One type is used to branch the control into
different ways and the other type is used to repeat a set of instructions again and again. The two types of decision
making statements are:

1. Selection statements or Branching statements
2. Looping statements

Selection Statements or Branching Statements
 The selection statements in C enable the programmer to select a set of instructions to be executed by the
CPU. This selection is based on a condition. C also supports a set of unconditional branching statements which
transfers the control to some other place in the program. The selection statements in C are:

1. if statement
2. switch statement
3. Conditional operator statement
4. goto

if Statement
 The if statement allows the programmer to select a set of instructions to be executed, based on a condition.
If the condition is evaluated to true, then one set of instructions will be executed or if the condition is evaluated to
false, another set of instructions will be executed. The general from of if statement is as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 2

Control Statements, Arrays, and Strings C Programming
There are four variations of the if statement. They are:

1. Simple if or null else
2. if…else
3. Nested if
4. else if Ladder

Simple if or null else
 The simple if allows the programmer to execute or skip a set of instructions based on the value of a
condition. The simple if is a one way selection statement. If the condition is true, a set of statements will be
executed. If the condition is false, the control will continue with the next statement after the if statement. The
simple if can be represented diagrammatically as shown below:

Syntax for simple if is as shown below:

if…else Statement
 The if…else is a two way decision making selection statement. If the condition evaluates to true, one set of
instructions will be executed. If the condition evaluates to false, another set of instructions will be executed. The
if…else statement can be represented diagrammatically as shown below:

if(cond/expr)
{
 Stmt(s);
}
Stmt(s);

P. S. Suryateja startertutorials.com [short domain - stuts.me] 3

Control Statements, Arrays, and Strings C Programming
Syntax of if…else statement is as shown below:

Nested if
 The nested if can also be called as cascaded if. In nested if statement, one if statement is nested within
another if statement. A nested if statement can be used as an alternative to logical AND operator. If the condition is
evaluated to true in the first if statement, then the condition in the second if statement is evaluated and so on. The
nested if statement can be represented diagrammatically as shown below:

Syntax of nested if statement is as shown below:

if (cond/expr)
{
 Stmt(s);
}
else
{
 Stmt(s);
}
Stmt(s);

if(cond/expr)
{
 if(cond/expr)
 {
 Stmt(s);
 }
 else
 {
 Stmt(s);
 }
}
else
{
 Stmt(s);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 4

Control Statements, Arrays, and Strings C Programming
else if Ladder
 The else if ladder in C is a multi way selection operator. It allows the programmer to select one set of
instructions among various other sets of instructions. The else if ladder is similar to the logical OR operator. If first
condition is true, then corresponding set of instructions will be executed. If the condition is false, then the next
condition is checked and so on. If all the conditions fail, the statements in the default block will be executed. The
else if ladder can be represented diagrammatically as shown below:

Syntax of else if statement is as shown below:

if(cond/expr)
{
 Stmt(s);
}
else if(cond/expr)
{
 Stmt(s);
}
else if(cond/expr)
{
 Stmt(s);
}
….
else
{
 Stmt(s);
}
Stmt(s);

P. S. Suryateja startertutorials.com [short domain - stuts.me] 5

Control Statements, Arrays, and Strings C Programming

/* Program to demostrate if statement */
#include<stdio.h>
#include<conio.h>
main()
{
 int a,b;
 printf("Enter the value of a:");
 scanf("%d",&a);
 printf("Enter the value of b:");
 scanf("%d",&b);
 if(a>b)
 {
 printf("a is greater than b!");
 }
}

/* Program to demostrate if...else statement */
#include<stdio.h>
#include<conio.h>
main()
{
 int a,b;
 printf("Enter the value of a:");
 scanf("%d",&a);
 printf("Enter the value of b:");
 scanf("%d",&b);
 if(a>b)
 {
 printf("a is greater than b!");
 }
 else
 {
 printf("b is greater than a!");
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 6

Control Statements, Arrays, and Strings C Programming

/* Program to demostrate nested if statement */
#include<stdio.h>
#include<conio.h>
main()
{
 int a,b,c;
 printf("Enter the value of a:");
 scanf("%d",&a);
 printf("Enter the value of b:");
 scanf("%d",&b);
 printf("Enter the value of c:");
 scanf("%d",&c);
 if(a>b)
 {
 if(a>c)
 {
 printf("a is greater than b and c");
 }
 else
 {
 printf("a is not greater than c");
 }
 }
 else
 {
 printf("a is not greater than b");
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 7

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate else if ladder*/
#include<stdio.h>
main()
{
 int marks;
 printf("Enter the marks: ");
 scanf("%d",&marks);
 if(marks>90)
 {
 printf("\nGarde - A");
 }
 else if(marks>75&&marks<=90)
 {
 printf("\nGrade - B");
 }
 else if(marks>60&&marks<=75)
 {
 printf("\nGrade - C");
 }
 else if(marks>45&&marks<=60)
 {
 printf("\nGrade - D");
 }
 else
 {
 printf("\nFAIL!");
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 8

Control Statements, Arrays, and Strings C Programming
switch Statement
 Although, C provides a multi way selection statement like else if, when the number of conditions increases,
the program will become less readable. To solve this problem, C provides an easy to understand multi way selection
statement called switch statement. The switch statement to easy to understand when there are more than 3
alternatives. The switch statement can be represented diagrammatically as shown below:

As seen in the above diagram, the switch statement switches between the blocks based on the value of the
expression. Each block will have a value associated with it. The expression in the switch statement must always
reduce to an integer value. So the expression in the switch statement can be either an integer value or a character
constant or an expression which reduces to an integer value. The label for each block can be either an integer value
or a character constant.
Syntax for the switch statement is as shown below:

As seen in the above syntax, each block is represented using the case keyword and the case keyword follows with
the label of the block. In a switch statement, both the default block and the break statement are optional. If none of
the blocks are matched, then the statements in the default block are executed. Every block is ended with a break
statement. If we remove the break statement from a particular block, all the subsequent blocks are also executed
until the next break statement is encountered.

switch(expression)
{
 case label1:
 Stmt(s);
 break;
 case label2:
 Stmt(s);
 break;
 case label3:
 Stmt(s);
 break;
 …
 case labelN:
 Stmt(s);
 break;
 default:
 Stmt(s);
 break;
}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 9

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate switch statement*/

#include<stdio.h>
#include<conio.h>
main()
{
 char ch;
 printf("\nEnter a character: ");
 scanf("%c",&ch);
 switch(ch)
 {
 case 'a':
 printf("Entered character is a vowel!");
 break;
 case 'e':
 printf("Entered character is a vowel!");
 break;
 case 'i':
 printf("Entered character is a vowel!");
 break;
 case 'o':
 printf("Entered character is a vowel!");
 break;
 case 'u':
 printf("Entered character is a vowel!");
 break;
 default:
 printf("Entered character is not a vowel!");
 break;
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
10

Control Statements, Arrays, and Strings C Programming
Conditional Operator Statement
 C language provides an unusual operator called conditional operator which is represented as ? : . The
conditional operator is a two way selection operator. The syntax for conditional operator statement is as shown
below:

 As shown in the above syntax, when the condition evaluates to true, expr1 is executed. Otherwise, if the
condition is false, expr2 is executed. The conditional operator statement can be represented diagrammatically as
shown below:

Every conditional operator statement can be converted into an if…else statement. But the vice versa is not true.

/*Program to calculate the value of y by using the following equations
 y = -x, if x <= 0
 y = x+1, if x > 0
*/
#include<stdio.h>
#include<conio.h>
main()
{
 int x,y;
 printf("Enter the value of x: ");
 scanf("%d",&x);
 y = (x<=0) ? (-x) : (x+1);
 printf("y = %d",y);
}

(cond/expr) ? expr1 : expr2

P. S. Suryateja startertutorials.com [short domain - stuts.me]
11

Control Statements, Arrays, and Strings C Programming
goto Statement
 Unlike other selection or branching statements that we have seen so far which branches based on a
condition, the goto statement branches unconditionally. That is why the goto statement is also referred to as
unconditional jump statement. There are two more unconditional branch statements in C. They are: break and
continue. We have already seen the break statement in switch statement. But both break and continue are
extensively used inside loops. So, we will discuss about these two unconditional branch statements later. By using
the goto branch statement, we can either skip some instructions and jump forward in the program or jump back and
again repeat a set of instructions. So there are two ways in which we can use the goto statement. They are:

1. Forward jump
2. Backward jump.

Syntax of forward jump and backward jump is as shown below:

As shown in the above syntax, if the label is after the goto statement, then it is known as forward jump and if the
label is before the goto statement, it is known as backward jump.

/*Program to demonstrate goto Statement*/

#include<stdio.h>
#include<conio.h>
main()
{
 int number;
 read:
 printf("\nEnter a number: ");
 scanf("%d",&number);
 if(number>0)
 {
 printf("Number is +ve\n");
 }
 else if(number<0)
 {
 printf("Number is -ve\n");
 }
 else
 {
 goto end;

goto label;

label:

label:

goto label;

Forward jump Backward jump

P. S. Suryateja startertutorials.com [short domain - stuts.me]
12

Control Statements, Arrays, and Strings C Programming
 }
 goto read;
 end:
 printf("You entered zero!");
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
13

Control Statements, Arrays, and Strings C Programming
Decision Making Looping Statements
 While writing C programs, the programmer might want a set of instructions to be repeated again and again
until some condition is satisfied. For this purpose, C provides decision making looping statements. The looping
statements provided by C are:

1. while
2. do…while
3. for

All the looping statements in C essentially consist of two parts namely: control statement and body of the
loop. The control statement decides when the loop will be stopped and the body of the loop contains the
instructions that are to be repeated. Based on where the control statement is placed in the loop, the looping
statements are categorized to two categories. They are:

1. Entry controlled loops
2. Exit controlled loops

Entry controlled loops
 The looping statements in which the control statement is placed before the body of the loop are known as
entry controlled loops. Ex: while and for loops. In entry controlled loops, the condition is checked first and if the
value is true, then the body of the loop is executed. Otherwise the body is never executed. An entry controlled loop
can be represented diagrammatically as shown below:

Exit controlled loops
 The looping statements in which the control statement is placed after the body of the loop are known as exit
controlled loops. Ex: do…while loop. In exit controlled loops, the body of the loop is executed once and then the
condition is checked. If the value is true, the body of the loop is executed again. Otherwise, the execution of the loop
stops. An exit controlled loop is represented diagrammatically as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me]
14

Control Statements, Arrays, and Strings C Programming

Based on the nature of the loops, the loops can be categorized into two types namely:
1. Definite loops (Ex: for)
2. Indefinite loops (Ex: while and do…while)

Definite loops: If the programmer exactly knows how many times he/she is going to repeat the set of instructions
(loop), such loops are known as definite loops.
Indefinite loops: If the programmer does not know exactly how many times he/she is going to repeat the set of
instructions (loop), such loops are known as indefinite loops.
The variable used in the condition inside of a definite loop is known as a counter and such loops are also known as
counter controlled loops. The variable used in the condition inside of a indefinite loop is known as sentinel and such
loops are also known as sentinel loops.

while Loop
 In C, the while loop is an entry controlled loop. The body of the while loops is only executed when the
condition evaluates to true. If the condition evaluates to false, the body of the loop is not executed. The while loops
are generally used when there is a need for repeating a set of instructions for indefinite amount of times. The syntax
of a while loop is as shown below:

while(cond/expr)

{

}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
15

Control Statements, Arrays, and Strings C Programming
do…while Loop
 In C, the do…while loop is an exit controlled loop. The body of the do…while loop is executed first and then
the condition is evaluated. If the value is true, the body of the loop is executed again and if the value is false, the
execution of the body of the loop stops. The difference between while and do…while is, unlike the while loop, the
body of the do…while loop is guaranteed to be executed atleast once (>=1). The syntax of the do…while loop is as
shown below:

for Loop
 In C, the for loop is an entry controlled loop. The for is generally used while implementing definite loops in C
programs. The for loop’s syntax is a little bit different from the other loops. In the syntax of the for loop, first the
counter is initialized, and then the condition is evaluated. If the value of the condition is true, the body of the for
loop is executed. Otherwise, the body of the loop is not executed. After the execution of the for loop’s body, the
counter is either incremented or decremented. Then the condition is evaluated again and so on. The syntax of the
for loop is as shown below:

The flowchart of the for loop is as shown below:

do

{

}while(cond/expr);

for(init; cond; incr/decr)

{

}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
16

Control Statements, Arrays, and Strings C Programming

P. S. Suryateja startertutorials.com [short domain - stuts.me]
17

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate while loop*/
/*Program which prompts the user to enter a number and performs
the
 sum of those numbers. The program terminates when the user enters
 -1 and prints the sum*/
#include<stdio.h>
#include<conio.h>
main()
{
 int number = 0, sum = 0;
 clrscr();
 while(number!=-1)
 {
 printf("Enter a number: ");
 scanf("%d",&number);
 if(number!=-1)
 {
 sum = sum + number;
 }
 }
 printf("Sum is: %d",+sum);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
18

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate do...while loop*/
/*Program which prompts the user to enter a number and performs
the
 sum of those numbers. The program terminates when the user enters
 -1 and prints the sum*/
#include<stdio.h>
#include<conio.h>
main()
{
 int number = 0, sum = 0;
 clrscr();
 do
 {
 printf("Enter a number: ");
 scanf("%d",&number);
 if(number!=-1)
 {
 sum = sum + number;
 }
 }while(number!=-1);
 printf("Sum is: %d",+sum);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
19

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate for loop*/
/*Program to print the sum of the numbers from 1 to 5*/
#include<stdio.h>
#include<conio.h>
main()
{
 int i, sum = 0;
 clrscr();
 for(i = 1; i <= 5; i++)
 {
 sum += i;
 }
 printf("Sum is: %d",+sum);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
20

Control Statements, Arrays, and Strings C Programming
break and continue
 C provides two unconditional branching statements which are extensively used inside the looping
statements. They are:

1. break
2. continue

break Statement
 The break statement is used inside the looping statements to break the execution of the loop. When the
break statement is encountered inside the loop, the execution of the body of the loop stops and the control is given
to the next instruction after the body of the loop. The syntax of the break statement is as shown below:

continue Statement
 The continue statement is used inside the looping statements to skip the execution of a set of instructions
and return the control back to the loop. When a continue statement is encountered within the body of the loop, the
statements after the continue statement are skipped and the control is passed back to the loop. The syntax of the
continue statement is as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me]
21

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate break inside a loop*/
/*Program which asks the number to enter a number repeatedly
 and prints out the entered number. Program must terminate
 when the user enters 0 or negative number*/
#include<stdio.h>
#include<conio.h>
main()
{
 int number;
 clrscr();
 while(1)
 {
 printf("Enter a number: ");
 scanf("%d",&number);
 if(number<=0)
 {
 printf("Program Terminated!");
 break;
 }
 else
 {
 printf("You enetered: %d\n",number);
 }
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
22

Control Statements, Arrays, and Strings C Programming

/*Program to demonstrate continue inside a loop*/
/*Program which prints the odd numbers between 1 and 100*/
#include<stdio.h>
#include<conio.h>
main()
{
 int i;
 clrscr();
 for(i = 1; i <= 100; i++)
 {
 if(i%2==0)
 {
 continue;
 }
 else
 {
 printf("%d ",i);
 }
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
23

Control Statements, Arrays, and Strings C Programming

/*Program to calculate the sum of digits in the given integer*/
#include<stdio.h>
#include<conio.h>
main()
{
 int number, sum=0;
 clrscr();
 printf("Enter a number: ");
 scanf("%d",&number);
 while(number>0)
 {
 sum = sum + (number % 10);
 number = number / 10;
 }
 printf("Sum of the digits in the given number is: %d",sum);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
24

Control Statements, Arrays, and Strings C Programming

/*Program to reverse the given integer*/
#include<stdio.h>
#include<conio.h>
main()
{
 int number, sum = 0;
 clrscr();
 printf("Enter a number: ");
 scanf("%d",&number);
 printf("\nReverse of the given number is: ");
 while(number>0)
 {
 sum = sum*10 + (number % 10);
 number = number / 10;
 }
 printf("%d",sum);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
25

Control Statements, Arrays, and Strings C Programming

/*Program to count the number of digits in the given integer*/
#include<stdio.h>
#include<conio.h>
main()
{
 int number, count=0;
 clrscr();
 printf("Enter a number: ");
 scanf("%d",&number);
 printf("\nNumber of digits is: ");
 while(number>0)
 {
 count++;
 number = number / 10;
 }
 printf("%d",count);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
26

Control Statements, Arrays, and Strings C Programming

/*Program to accept an arithmetic operator and perform the
corresponding operation.
 Program should prompt the user to proceed with the execution of the
program
 again or not. Using do while*/

#include<stdio.h>
#include<conio.h>
main()
{
 int n1,n2;
 char op,option;
 clrscr();
 n1 = 3, n2 = 2;
 do
 {
 printf("Enter the operator: ");
 scanf("%c",&op);
 fflush(stdin);
 switch(op)
 {
 case '+':
 printf("Sum of n1 and n2 is: %d",(n1+n2));
 break;
 case '-':
 printf("Subtracting n2 from n1 gives: %d",(n1-n2));
 break;
 case '*':
 printf("Multiplication of n1 and n2 gives: %d",(n1*n2));
 break;
 case '/':
 printf("Dividing n1 by n2 gives: %d",(n1/n2));

P. S. Suryateja startertutorials.com [short domain - stuts.me]
27

Control Statements, Arrays, and Strings C Programming

 break;
 case '%':
 printf("n1 mod n2 gives: %d",(n1%n2));
 break;
 default:
 printf("Invalid Operator!");
 break;
 }
 printf("\n\nDo you want to proceed (y/n)?: ");
 scanf("%c",&option);
 fflush(stdin);
 }while(option=='y');
 printf("Program Terminated!");
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
28

Control Statements, Arrays, and Strings C Programming

/* C program to print the smallest number in a set of numbers */
#include<stdio.h>
#include<conio.h>
main()
{
 int numbers[10], small, i;
 clrscr();
 for(i = 0; i < 10; i++)
 {
 printf("Enter the value %d: ",(i+1));
 scanf("%d",&numbers[i]);
 }
 small = numbers[0];
 for(i = 1; i < 10; i++)
 {
 if(small > numbers[i])
 {
 small = numbers[i];
 }
 }
 printf("\n\nSmallest number is: %d",small);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
29

Control Statements, Arrays, and Strings C Programming

/* C program to print the largest number in a set of numbers */
#include<stdio.h>
#include<conio.h>
main()
{
 int numbers[10], large, i;
 clrscr();
 for(i = 0; i < 10; i++)
 {
 printf("Enter the value %d: ",(i+1));
 scanf("%d",&numbers[i]);
 }
 large = numbers[0];
 for(i = 1; i < 10; i++)
 {
 if(large < numbers[i])
 {
 large = numbers[i];
 }
 }
 printf("\n\nLargest number is: %d",large);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
30

Control Statements, Arrays, and Strings C Programming

/* C program to print the alphabets along with ascii values */
#include<stdio.h>
#include<conio.h>
main()
{
 int i;
 clrscr();
 for(i = 65; i <= 122; i++)
 {
 if(i > 90 && i < 97)
 {
 continue;
 }
 printf("%c - %d\t",i,i);
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
31

Control Statements, Arrays, and Strings C Programming

Arrays
 In all the programs we have done until now, to store and operate on values we have used variables. But at a
point in time, a variable can hold only a single value. For example, in the following syntax: int a = 10; we are able to
store only 10 in the variable a, which is a single value. It is normal in programming to work with a list of values or a
group of values at once. For such purposes, variables cannot be used. So, C language provides the construct array for
holding multiple values at once.

Definition: “An array is a sequential collection/group of homogeneous (same type) elements which are referred by
the same name”. The type refers to the data types like int, char, float etc. All the elements/values in the array are of
the same type (data type). We cannot store values of different data types in the same array.

Uses:

1. To maintain a list of values.
2. To maintain a table of values.

One Dimensional Array
 For maintaining a list of items in C, we can declare an array with a single subscript like ai . Such arrays with
only a single subscript are known as one dimensional arrays. Common uses of one dimensional arrays are: to
maintain a list of numbers, to maintain the list of marks, to maintain a list of student names etc.

Declaration of one dimensional array
 For using arrays in C programs, just like we are declaring variables before using them, we should declare
arrays before using them. The syntax for declaring a one dimensional array is as shown below:

Example:

In the above example, int is the data type, a is the array name and size is the number of elements that we can store
in the array. So, in the above example a is an integer array, which can hold 10 integer values. All the 10 elements in
the array will be stored sequentially one after another inside the main memory (RAM). The one dimensional array
declared above will be maintained in the memory as shown below:

Initialization of one dimensional array
 Initialization means assigning values. To assign values to the elements in the array, we use the following
syntax:

type arrayname[size];

int a[10];

type arrayname[index] = value;

P. S. Suryateja startertutorials.com [short domain - stuts.me]
32

Control Statements, Arrays, and Strings C Programming

Example:

In the above syntax, index refers to the element in the array. The index of an array always starts with zero.

So, the index values for the array a in the above example are: 0, 1, 2, 3, 4. If we want to access nth element in the
array, the index value will be n-1. For example, if we want to refer first element in the array, the index value will be
1-1=0. In, the above example, we are assigning value 10 to the first element of the array.

Note: If the array elements are not initialized, the values stored in the elements of the array will be garbage values.

 Generally, there are two types of initializing an array. They are: 1) Static Initialization (at compile time) and 2)
Dynamic Initialization (at run time). In static initialization, the elements of an array are assigned values when the
program is compiled. In dynamic initialization, the elements of an array are assigned values when the program is
executed (runtime). The above way of initialization is static initialization. We can also perform static initialization in
other ways as shown below:

Example:

In the above example, in the first line, the size is specified as 10. But, in the second line, the size was not

specified. In such cases, the size is automatically calculated. In this example, the size is automatically computed as 10
by the compiler. The array will be represented in the memory as shown below:

 In dynamic initialization, the values are assigned to the elements of the array during the execution of the
program. Let’s see the following piece of code:

int a[5];

a[0] = 10;

type arrayname[size] = {value1, value2, …. , valueN};

Or

type arrayname[] = {value1, value2, …. , valueN};

int a[10] = {1,2,3,4,5,6,7,8,9,10};

or

int a[] = {1,2,3,4,5,6,7,8,9,10};

int a[10], i;
for(i = 0; i < 10; i++)
{
 scanf(“%d”,&a[i]);
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
33

Control Statements, Arrays, and Strings C Programming

In the above example, the user will be storing the values into the array while executing the program. Until then,
garbage values will be stored in the array.

Note: If we use braces i.e., { and }, for initializing the array, the default values for all the elements in the array will be
zero.

Programs:

/* C program to declare an integer array and initialize the elements in the array
*/
#include<stdio.h>
#include<conio.h>
main()
{
 int a[5];
 clrscr();
 a[0] = 1;
 a[1] = 2;
 a[2] = 3;
 a[3] = 4;
 a[4] = 5;
 printf("a[0]: %d\n",a[0]);
 printf("a[1]: %d\n",a[1]);
 printf("a[2]: %d\n",a[2]);
 printf("a[3]: %d\n",a[3]);
 printf("a[4]: %d",a[4]);
 getch();
}
/* C program to declare an integer array and initialize the elements in the array
*/
#include<stdio.h>
#include<conio.h>
main()
{
 int a[5] = {1,2,3,4,5};
P. S. Suryateja startertutorials.com [short domain - stuts.me]
34

Control Statements, Arrays, and Strings C Programming

 clrscr();
 printf("a[0]: %d\n",a[0]);
 printf("a[1]: %d\n",a[1]);
 printf("a[2]: %d\n",a[2]);
 printf("a[3]: %d\n",a[3]);
 printf("a[4]: %d",a[4]);
 getch();
}

/* C program to declare an integer array and initialize the elements in the array
*/
#include<stdio.h>
#include<conio.h>
main()
{
 int a[] = {5,2,1,9,10};
 clrscr();
 printf("a[0]: %d\n",a[0]);
 printf("a[1]: %d\n",a[1]);
 printf("a[2]: %d\n",a[2]);
 printf("a[3]: %d\n",a[3]);
 printf("a[4]: %d",a[4]);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
35

Control Statements, Arrays, and Strings C Programming

/* C program to print the capacity of an array */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[] = {5,2,1,9,10};
 int size;
 clrscr();
 size = sizeof(a);
 printf("Size of the array is: %d bytes",size);
 getch();
}

/* C program to print no of elements in an array */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[] = {5,2,1,9,10};
 int count;
 clrscr();
 count = sizeof(a)/sizeof(int);
 printf("Number of elements in the array is: %d",count);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
36

Control Statements, Arrays, and Strings C Programming

/* C program to initialize array elements at runtime */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[10], i;
 clrscr();
 for(i = 0; i < 10; i++)
 {
 printf("Enter value %d: ",(i+1));
 scanf("%d",&a[i]);
 }
 printf("The elements in the array are: \n");
 for(i = 0; i < 10; i++)
 {
 printf("a[%d]: %d\n",i,a[i]);
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
37

Control Statements, Arrays, and Strings C Programming

/* C program to search for a number n in a group of 10 numbers */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[10], i, n;
 /*clrscr();*/
 for(i = 0; i < 10; i++)
 {
 printf("Enter value %d: ",(i+1));
 scanf("%d",&a[i]);
 }
 printf("Enter the value you want to search: ");
 scanf("%d",&n);
 for(i = 0; i < 10; i++)
 {
 if(n==a[i])
 {
 printf("Number found at index %d",i);
 }
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
38

Control Statements, Arrays, and Strings C Programming
/* C program to calculate the average of 10 numbers */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[10], i;
 float sum, avg;
 /*clrscr();*/
 for(i = 0; i < 10; i++)
 {
 printf("Enter value %d: ",(i+1));
 scanf("%d",&a[i]);
 }
 for(i = 0; i < 10; i++)
 {
 sum += a[i];
 }
 avg = sum / 10;
 printf("Average of 10 numbers is: %f", sum);
 getch();
}

/* C program to print the multiplication table of number n */
#include<stdio.h>
#include<conio.h>
main()
{
 int i, n;
 /*clrscr();*/
 printf("Enter the value of n: ");
 scanf("%d",&n);
 for(i = 1; i <= 10; i++)
 {
 printf("%d\t*\t%d\t=\t%d\n”, n, i, (n*i));
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
39

Control Statements, Arrays, and Strings C Programming

/* C program to print the elements in a array in reverse order */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[10], i;
 clrscr();
 for(i = 0; i < 10; i++)
 {
 printf("Enter the value %d: ",(i+1));
 scanf("%d",&a[i]);
 }
 printf("Elements in reverse order: ");
 for(i = 9; i >= 0; i--)
 {
 printf("%d ",a[i]);
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
40

Control Statements, Arrays, and Strings C Programming
Two Dimensional Array
 An array that has two subscripts, for example: aij is known as a two dimensional. A two dimensional array is
used to store a table of values which has rows and columns. Some of the uses/applications of the two dimensional
arrays are: to maintain the marks of students, to maintain prices of items etc…

Declaration of a two dimensional array
 Like a one dimensional array, the two dimensional array must also be declared before using it in the
program. The syntax for declaring a two dimensional array is shown below:

Example:

In the above example, int refers to the data type, a refers to the array name, first set of square brackets represents
the number of rows and the second set of square brackets represents the number of columns. So, our two
dimensional array contains 9 elements in total.

Initialization of a two dimensional array
 A two dimensional array can be initialized in different ways either statically at compile time or dynamically at
run time. The syntax for initializing a two dimensional array statically is as shown below:

Example:

The memory representation of the two dimensional array will be as shown below:

The values will be assigned starting with the first element in the first row and so on. If insufficient values are
provided, then the remaining elements will be initialized to zero. There is another way of initializing a two
dimensional array in which we can specify the values for each row separately. We can see the example below:

type arrayname[rows][columns];

int a[3][3];

arrayname[rowindex][columnindex] = value;

(or)

type arrayname[rows][columns] = {val1,val2,….,valn};

a[0][0] = 10;

(or)

int a[3][3] = {1,1,1,2,2,2,3,3,3};

int a[3][3] = {{1,1,1},{2,2,2},{3,3,3}};
P. S. Suryateja startertutorials.com [short domain - stuts.me]
41

Control Statements, Arrays, and Strings C Programming

Programs:

/* C program to declare a two dimensional array and initialize it */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[2][3];
 int i,j;
 clrscr();
 a[0][0] = 1;
 a[0][1] = 2;
 a[0][2] = 3;
 a[1][0] = 4;
 a[1][1] = 5;
 a[1][2] = 6;
 for(i = 0; i < 2; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("%d ",a[i][j]);
 }
 printf("\n");
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
42

Control Statements, Arrays, and Strings C Programming

/* C program to declare a two dimensional array and initialize it */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[2][3] = {1,2,3,4,5,6};
 /* int a[2][3] = {{1,2,3},{4,5,6}}; */
 int i,j;
 clrscr();
 for(i = 0; i < 2; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("%d ",a[i][j]);
 }
 printf("\n");
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
43

Control Statements, Arrays, and Strings C Programming

/* C program to declare a two dimensional array and initialize it dynamically */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[3][3];
 int i,j;
 /*clrscr();*/
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("Enter a[%d][%d]: ",i,j);
 scanf("%d",&a[i][j]);
 }
 }
 printf("The elements in the array are: \n");
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("%d ",a[i][j]);
 }
 printf("\n");
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
44

Control Statements, Arrays, and Strings C Programming

/* C program to perform matrix addition */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[3][3], b[3][3], c[3][3];
 int i,j;
 /*clrscr();*/
 printf("Enter the elements of matrix a: \n");
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("Enter a[%d][%d]: ",i,j);
 scanf("%d",&a[i][j]);
 }
 }
 printf("Enter the elements of matrix b: \n");
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("Enter b[%d][%d]: ",i,j);
 scanf("%d",&b[i][j]);
 }
 }
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 c[i][j] = a[i][j] + b[i][j];
 }
 }
 printf("The elements in the array are: \n");
 for(i = 0; i < 3; i++)
 {

P. S. Suryateja startertutorials.com [short domain - stuts.me]
45

Control Statements, Arrays, and Strings C Programming

 for(j = 0; j < 3; j++)
 {
 printf("%d ",c[i][j]);
 }
 printf("\n");
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
46

Control Statements, Arrays, and Strings C Programming

/* C program to multiply two matrices */
#include<stdio.h>
#include<conio.h>
main()
{
 int a[3][3], b[3][3], c[3][3] = {};
 int i, j, k;
 /*clrscr();*/
 printf("Enter the elements of matrix a: \n");
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("Enter a[%d][%d]: ",i,j);
 scanf("%d",&a[i][j]);
 }
 }
 printf("Enter the elements of matrix b: \n");
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("Enter b[%d][%d]: ",i,j);
 scanf("%d",&b[i][j]);
 }
 }
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 for(k = 0; k < 3; k++)
 {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }

P. S. Suryateja startertutorials.com [short domain - stuts.me]
47

Control Statements, Arrays, and Strings C Programming

 printf("The elements in the array c are: \n");
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 {
 printf("%d\t",c[i][j]);
 }
 printf("\n");
 }
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
48

Control Statements, Arrays, and Strings C Programming
Strings
 A string is a collection of characters which is treated as a single data item. A group of characters enclosed in
double quotes is known as a string constant. Some of the examples of string constants are:

1. “hai”
2. “hello world”
3. “My name is suresh”

In C programming, there is no predefined data type to declare and use strings. So, we use character arrays to declare
strings in C programs. The common operations that can be performed on a string are:

• Reading and writing strings
• Combining strings together
• Copying one string to another
• Comparing strings for equality
• Extracting a portion of the string (substring)

Declaring and Initializing Strings
 Like variables, we should declare strings before using them in the program. Since we already known that
strings are implemented as character arrays, the syntax for declaring a string is as shown below:

The size refers to the number of characters in the string. When the compiler assigns a character string to a character
array, it appends a ‘\0’ to the end of the array. So, the size of the character array should always be number of
characters plus 1.
 Like numeric arrays and variables, character arrays can also be initialized when they are declared. Some of
the examples for initializing the string are as shown below:

If less number of characters are provided than the size of the string, the rest of the characters are initialized to ‘\0’. If
we try to assign more characters then the size of the string, compiler gives an error.

Note: The string termination character ‘\0’, is used to terminate a string. In C, there is no data type provided
available. We maintain strings using character arrays. A string is a variable length structure stored inside a fixed size
array. The size of the array is often larger than the number of characters in the string. So, the compiler must have
some means to detect the end of the string. For this purpose we use ‘\0’.

Note: If ‘\0’ is not provided then the compiler will treat the array as a normal character array. Only when we provide
the ‘\0’ character, compiler treats it as a string.

char stringname[size];

char str[10] = {‘N’,’E’,’W’,’ ‘,’D’,’E’,’L’,’H’,’I’,’\0’};

or

char str[10] = “NEW DELHI”;

P. S. Suryateja startertutorials.com [short domain - stuts.me]
49

Control Statements, Arrays, and Strings C Programming
Programs:

/*C program to declare a string */
#include<stdio.h>
#include<conio.h>
main()
{
 char str[6];
 clrscr();
 str[0] = 'h';
 str[1] = 'e';
 str[2] = 'l';
 str[3] = 'l';
 str[4] = 'o';
 str[5] = '\0';
 printf("%s",str);
 getch();
}

/*C program to declare a string */
#include<stdio.h>
#include<conio.h>
main()
{
 char str1[6] = {'h','e','l','l','o','\0'};
 char str2[] = {'h','e','l','l','o','\0'};
 char str3[] = "hello world";
 clrscr();
 printf("%s",str1);
 printf("\n%s",str2);
 printf("\n%s",str3);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
50

Control Statements, Arrays, and Strings C Programming

/*C program to print a string */
#include<stdio.h>
#include<conio.h>
main()
{
 char str1[6] = {'h','e','l','l','o','\0'};
 int i;
 clrscr();
 printf("%s\n",str1);
 printf("\nPrinting the string using for loop...\n");
 for(i = 0; i < 5; i++)
 {
 printf("%c",str1[i]);
 }
 getch();
}

/*C program to calculate the length of a string */
#include<stdio.h>
#include<conio.h>
main()
{
 char str[6] = {'h','e','l','l','o','\0'};
 int length;
 clrscr();
 length = sizeof(str) - 1;
 printf("Length of the string is: %d",length);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
51

Control Statements, Arrays, and Strings C Programming

/*C program to calculate the length of a string */
#include<stdio.h>
#include<conio.h>
main()
{
 char str[6] = {'h','e','l','l','o','\0'};
 int length, i;
 clrscr();
 i = 0;
 while(str[i] != '\0')
 {
 i++;
 }
 length = i;
 printf("Length of the string is: %d",length);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
52

Control Statements, Arrays, and Strings C Programming

/*C program to search for a character in a string */
#include<stdio.h>
#include<conio.h>
main()
{
 char str[6] = {'h','e','l','l','o','\0'}, ch;
 int i;
 clrscr();
 printf("Enter a character to search: ");
 scanf("%c",&ch);
 for(i = 0; i < 5; i++)
 {
 if(str[i] == ch)
 {
 printf("Character found at position %d",(i+1));
 break;
 }
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
53

Control Statements, Arrays, and Strings C Programming
Reading Strings

Using scanf function
 Strings can be read from the terminal by using the familiar scanf function. The format specifier to read
strings is %s. An example of reading a string using scanf function is shown below:

There is a downside of using scanf function for reading strings. The downside is, scanf cannot read strings with white
spaces. For example, if we provide “New Delhi” as the string, scanf will read only “New” and the rest of the
characters are neglected or not processed. So, to read “New Delhi”, we have to declare two character arrays and
read “New” and “Delhi” separately.

Reading and printing a line of text

Reading Text (getchar and gets)
 As we have learned that scanf function cannot be used for reading a line of text, we have to search for other
alternatives for reading a line of text which has white spaces embedded in it. One alternative is to read the line of
text character by character until the enter key (\n) is pressed. Here we will use a predefined function called getchar(
) which reads a single character from the terminal.

/* C program to read a line of text using getchar function */
#include<stdio.h>
#include<conio.h>
main()
{
 char line[20], ch;
 int i;
 clrscr();
 printf("Enter the line of text: ");
 i = 0;
 do
 {
 ch = getchar();
 line[i] = ch;
 i++;

 }while(ch != '\n');
 line[i] = '\0';
 printf("%s",line);
 getch();
}

In the above program we are reading characters until a new line character (\n) is encountered. So, by using
the above approach we can read a line of text. There is a more efficient way for reading a line of text with white
spaces. We can use the gets function which is available in the stdio.h header file. The purpose of gets function is to
read a line of text from the terminal/keyboard. The usage of gets function is as shown below:

char str[10];

scanf(“%s”, str);

gets(arrayname);

P. S. Suryateja startertutorials.com [short domain - stuts.me]
54

Control Statements, Arrays, and Strings C Programming
The arrayname in the above piece of code is the array in which we are going to store the string. By using the gets
function the above program can be rewritten as shown below:

/* C program to read a line of text using gets function */
#include<stdio.h>
#include<conio.h>
main()
{
 char line[20], ch;
 int i;
 clrscr();
 printf("Enter the line of text: ");
 gets(line);
 printf("%s",line);
 getch();
}

Printing Text (putchar and puts)
 We can print strings in multiple ways. First is by using printf function. We can use the format specifier %s to
print a string. Let us consider the following example:

The output of the above piece of code is “hai”. The second way is to print the string character by character. For this
purpose we can use the format specifier %c for printing each character or we can use the predefined function
putchar. The usage of this function is as shown below:

In the above code, ch is the character that we want to print on the screen. By using the putchar function we can
print a line of text or string as shown below:

/* C program to print a string using putchar function */
#include<stdio.h>
#include<conio.h>
main()
{
 char line[20];
 int i;
 clrscr();
 printf("Enter the line of text: ");
 gets(line);
 i = 0;
 while(line[i] != '\0')
 {
 putchar(line[i]);
 i++;
 }

putchar(ch);

char str[4] = {‘h’,’a’,’i’,’\0’};

printf(“%s”, str);

P. S. Suryateja startertutorials.com [short domain - stuts.me]
55

Control Statements, Arrays, and Strings C Programming
 getch();
}

The last alternative for printing a string or a line of text is by using the predefined function puts. This function is
available in the stdio.h header file. By using the puts function we can rewrite the above program as shown below:

/* C program to print a string using puts function */
#include<stdio.h>
#include<conio.h>
main()
{
 char line[20];
 clrscr();
 printf("Enter the line of text: ");
 gets(line);
 puts(line);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
56

Control Statements, Arrays, and Strings C Programming
String Manipulations
 As we have already seen in the previous unit, a string is a collection of characters and strings are maintained
as character arrays in C programs. The common operations or manipulations that can be performed on strings are:

1. Reading and writing strings
2. Concatenating/combining/joining strings
3. Comparing strings
4. Copying one string into another string
5. Extracting a portion of the string (substring)

C provides predefined functions for performing all the above operations or manipulations on strings. Most of these
predefined functions are available in string.h header file. The list of predefined functions is given below:

Functions Purpose
scanf, gets, getchar To read a string
printf, puts, putchar To print a string
strcat To concatenate two strings
strcmp To compare two strings
strcpy To copy one string into another string
strstr To locate a substring in the string
strlen To calculate the length of the string
strrev To reverse the given string

Note: The difference between scanf and gets is, scanf can read strings which does not contain any white spaces.
Whereas gets can read strings both without spaces and with spaces.

strcat()
 The strcat predefined function is used to concatenate/join two strings together. The syntax of the strcat
function is shown below:

The strcat function accepts two parameters which are strings. The string2 parameter can be either a character array
or a string constant. The strcat function takes the content of string2 and merges it with the content in string1 and
the final result will be stored in string1. Let us see an example:

strcmp()
 The strcmp predefined function is used to compare two strings. After comparison, if the two strings are
equal, then the function returns a 0. Otherwise if the first string comes before the second string in alphabetical

strcat(string1, string2)

P. S. Suryateja startertutorials.com [short domain - stuts.me]
57

Control Statements, Arrays, and Strings C Programming
order, the function returns a -1. If the first string comes after the second string in alphabetical order, the function
returns a 1 as the return value. The syntax of strcmp function is as shown below:

Let us consider an example:

As seen from the above example, the strcmp function the first letter in both the strings and since they are equal,
now it compares the second letter in both the strings, which are e and a. Since, e comes after a according to
dictionary order, the result will be 1 which means, the string hello comes after (greater than) the string hai.

strcpy()
 The strcpy function is used to copy one string into another string. This function can be used for creating a
copy of an existing string. The syntax of strcpy function is as shown below:

In the above syntax, the string2 can be either a string or string constant. The string in string2 is copied into string1
and the result will be stored in string1. Let us consider an example:

strlen()
 The strlen function is used to retrieve the length of a given string. The return type of this function will be an
integer. The syntax of strlen function is as shown below:

strcmp(string1, string2)

strcpy(string1, string2)

strlen(string)

P. S. Suryateja startertutorials.com [short domain - stuts.me]
58

Control Statements, Arrays, and Strings C Programming
The parameter string can be either a character array or a string constant. The function returns the length of the
string which will be the number of characters in the string excluding the ‘\0’ character. Let us consider an example:

strtstr()
 The strstr function returns a character pointer of the first occurrence of the given substring in the string. If
the substring is not found in the string, the function strstr returns NULL. The syntax for strstr function is shown
below:

In the above syntax, strstr searches for string2 in the string1. If found, it returns a pointer to the first occurrence of
the string2 in string1. If not found, it returns NULL. Let us consider an example:

strrev()
 The strrev function is used to reverse a given string. We can use this predefined function to check whether a
given string is a palindrome or not. The syntax for using the strrev function is as shown below:

In the above syntax, the strrev function reverses the given string and returns it back. The content of the string also
changes. Let us see an example:

strstr(string1, string2)

strrev(string)

P. S. Suryateja startertutorials.com [short domain - stuts.me]
59

Control Statements, Arrays, and Strings C Programming

Other predefined functions
 Some of the other predefined functions available in the string.h header file are shown in the below table:

Function Purpose Syntax
strncat To concatenate n number of left most characters strncat(str1, str2, n)
strncmp To compare n number of left most characters strncmp(str1, str2, n)
strncpy To copy n number of left most characters strncpy(str1, str2, n)

P. S. Suryateja startertutorials.com [short domain - stuts.me]
60

Control Statements, Arrays, and Strings C Programming
Programs:

/* C program to concatenate two strings without using any functions*/
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str1[20] = {'h','e','l','l','o','\0'};
 char str2[4] = {'h','a','i','\0'};
 char result[10];
 int i, j;
 clrscr();
 for(i = 0; i < strlen(str1); i++)
 {
 result[i] = str1[i];
 }
 result[i] = ' ';
 for(i = strlen(str1)+1, j = 0; j < strlen(str2); i++,j++)
 {
 result[i] = str2[j];
 }
 result[i] = '\0';
 printf("Concatenated String is: %s",result);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
61

Control Statements, Arrays, and Strings C Programming

/* C program to concatenate two strings using strcat function */
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str1[20] = {'h','e','l','l','o',' ','\0'};
 char str2[6] = {'w','o','r','l','d','\0'};
 clrscr();
 strcat(str1, str2);
 printf("Concatenated string is: %s",str1);
 getch();
}

/* C program to compare two strings using strcmp function */
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str1[20] = {'h','e','l','l','o',' ','\0'};
 char str2[6] = {'w','o','r','l','d','\0'};
 int result;
 clrscr();
 result = strcmp(str1, str2);
 printf("Result is: %d",result);
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
62

Control Statements, Arrays, and Strings C Programming

/* C program to copy one string into another string using strcpy function */
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str1[20] = {'h','e','l','l','o',' ','\0'};
 char str2[6] = {'w','o','r','l','d','\0'};
 clrscr();
 strcpy(str1, str2);
 printf("Copied string is: %s",str1);
 getch();
}

/* C program to print the length of strings using strlen function */
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str1[] = {'h','e','l','l','o','\0'};
 char str2[] = {'h','a','i','\0'};
 clrscr();
 printf("Length of str1 is: %d\n",strlen(str1));
 printf("Length of str2 is: %d",strlen(str2));
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
63

Control Statements, Arrays, and Strings C Programming

/* C program to locate a substring in the given string using strstr function */
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str1[] = {'h','e','l','l','o','\0'};
 char str2[] = "llo";
 int index;
 clrscr();
 if(strstr(str1, str2) != NULL)
 {
 printf("Substring str2 is present in str1");
 }
 else
 {
 printf("Substring str2 is not present in str1");
 }
 getch();
}

/* C program to reverse a string using strrev function */
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 char str[6] = "hello";
 clrscr();
 printf("Reverse of the string is: %s",strrev(str));
 getch();
}

/* C program to check for a string palindrome */
#include<stdio.h>

P. S. Suryateja startertutorials.com [short domain - stuts.me]
64

Control Statements, Arrays, and Strings C Programming

#include<conio.h>
#include<string.h>
main()
{
 char org[10], dup[10];
 clrscr();
 printf("Enter a string: ");
 gets(org);
 strcpy(dup, org);
 strrev(org);
 if(strcmp(org, dup))
 {
 printf("Entered string is not a palindrome!");
 }
 else
 {
 printf("Entered string is a palindrome");
 }
 getch();
}

P. S. Suryateja startertutorials.com [short domain - stuts.me]
65

	Decision Making Statements / Control Statements
	Selection Statements or Branching Statements
	if Statement
	Simple if or null else
	if…else Statement
	Nested if
	else if Ladder
	switch Statement
	Conditional Operator Statement
	goto Statement

	Decision Making Looping Statements
	Entry controlled loops
	Exit controlled loops
	while Loop
	do…while Loop
	for Loop
	break and continue
	break Statement
	continue Statement

	Arrays
	One Dimensional Array
	Declaration of one dimensional array
	Initialization of one dimensional array

	Two Dimensional Array
	Declaration of a two dimensional array
	Initialization of a two dimensional array

	Programs:

	Strings
	Declaring and Initializing Strings
	Programs:
	Reading Strings
	Using scanf function

	Reading and printing a line of text
	Reading Text (getchar and gets)
	Printing Text (putchar and puts)

	String Manipulations
	strcat()
	strcmp()
	strcpy()
	strlen()
	strtstr()
	strrev()
	Other predefined functions
	Programs:

