

UNIT - 3
INHERITANCE
INTERFACES
PACKAGES

EXCEPTION HANDLING

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Inheritance Concepts

Inheritance is defined as: Deriving properties and behavior of one class to another class.

The class from which things are derived is known as super class and the class in to which

things are derived to is known as sub class. A super class can also be called as base or parent

class and a sub class can also be called as derived or child class.

Inheritance relationship between two classes is also known as is-a relationship or also called

as generalization-specialization relationship. When one or more classes have general

characteristics, such characteristics are moved to a general class (super class) and only

special characteristics are maintained in the specialized class (sub class). Inheritance

relationship can be represented as shown below:

In the above figure, class A is super class and class B is sub class. In Java programs,

inheritance is implemented using extends keyword. For example, if a class B wants to derive

the characteristics of class A, we can write as shown below:

class B extends class A

{

 //Members of class B

}

Let’s look at how inheritance works using a more practical example given below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 1

Inheritance, Interfaces, Packages, Exception Handling Java Programming

class Student

{

 String name;

 String regdNo;

 int age;

 Student(String name, String regdNo, int age)

 {

 this.name = name;

 this.regdNo = regdNo;

 this.age = age;

 }

 public void getName()

 {

 System.out.println("Student's name is: "+name);

 }

 public void getRegdNo()

 {

 System.out.println("Student's registered number is: "+regdNo);

 }

 public void getAge()

 {

 System.out.println("Student's name is: "+age);

 }

}

class CSEStudent extends Student

P. S. Suryateja startertutorials.com [short domain - stuts.me] 2

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 static final String branch = "CSE";

 CSEStudent(String name, String regdNo, int age)

 {

 super(name, regdNo, age);

 }

 public void getBranch()

 {

 System.out.println("Student's branch is: "+branch);

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 CSEStudent s1 = new CSEStudent("Teja", "10AB001", 20);

 s1.getName();

 s1.getRegdNo();

 s1.getAge();

 s1.getBranch();

 }

}

In the above example, class Student is super class and class CSEStudent is sub class. You can

see how general data and code is maintained in the super class and how specific data

(branch and getBranch) is maintained in the sub class. Output of the above program is:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 3

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Student’s name is: Teja
Student’s registered number is: 10AB001
Student’s name is: 20
Student’s branch is: CSE

Advantages of Inheritance

Following are the advantages of using inheritance in programs:

• Reusability: The code and methods declared in the base class can be re used in the

derived class.

• Extensibility: Derived classes can be extended to provide new functionality of their

own.

• Data Hiding: Base class can hide some of its data and code by making them private.

• Overriding: Derived classes can have methods with same signature as in base class.

The methods in the derived class provides suitable functionality which might be

different from the methods available in the base class.

Disadvantages of Inheritance

Following are the disadvantages of using inheritance:

• More time taken for the control to reach the base class from derived classes when

there are several levels of inheritance.

• Tight coupling between the base class and derived class.

• Increase in maintenance time as changes done to base class may require changes to

be performed in the derived class.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 4

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Types of Inheritance

There are five types of inheritance based on how many base classes and derived classes are

there in the inheritance relationship. They are as follows:

1. Simple inheritance

2. Multi-level inheritance

3. Multiple inheritance

4. Hierarchical inheritance

5. Hybrid inheritance

Let’s look at each one of these five types of inheritance in more detail.

Simple inheritance:

This is the most frequently used and most simple of the five types of inheritance. In this type

of inheritance there is a single derived class which inherits from a single base class. This can

be represented pictorially as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 5

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above figure, A is base class and B is derived class. This can be converted to Java code

as given below:

class A

{

 //Members of class A

}

class B extends A

{

 //Members of class B

}

Multi-level Inheritance

In this type of inheritance there are several classes in the hierarchy forming multiple levels.

Each level contains a base class and a derived class. Multi-level inheritance can be

represented as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 6

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above figure there are two levels. First level contains A as the base class and B as the

derived class. In the second level B is the base class and C is the derived class. The above

figure can be converted to Java code as given below:

class A

{

 //Members of class A

}

class B extends A

{

 //Members of class B

}

class C extends B

{

 //Members of class C

}

Multiple Inheritance

In this type of inheritance a single derived class can inherit from two or more base classes.

Multiple inheritance can be represented as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 7

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above figure A and B are base classes and C is the derived class. Above figure can be

converted to Java code as given below:

class A

{

 //Members of class A

}

class B

{

 //Members of class B

}

class C extends A,B

{

 //Members of class C

}

It is important to remember that in Java, we can inherit from more than one class. So in the

above code class C extends A, B is syntactically incorrect.

Hierarchical Inheritance

In this type of inheritance, two or more derived classes inherit from a common base class.

Hierarchical inheritance can be represented as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 8

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above figure A is the base class and B, C and D are derived classes. Above figure can

be converted to Java code as given below:

class A

{

 //Members of class A

}

class B extends A

{

 //Members of class B

}

class C extends A

{

 //Members of class C

}

class D extends A

{

 //Members of class D

}

Hybrid Inheritance

As the name itself implies, hybrid inheritance is a combination of any two or more of the

above mentioned four types of inheritance. Hybrid inheritance can be represented as shown

below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 9

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above figure you can see hierarchical, single and multi-level inheritance. Above figure

can be converted to Java code as given below:

class A

{

 //Members of class A

}

class B extends A

{

 //Members of class B

}

class C extends A

{

 //Members of class C

}

class D extends A

{

 //Members of class D

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 10

Inheritance, Interfaces, Packages, Exception Handling Java Programming

class E extends B

{

 //Members of class E

}

Note: It is not mandatory to write the classes in a particular order in Java. You can write in

any order that you want.

What types of inheritance does Java support?

Java supports all types of inheritance mentioned above except multiple inheritance. Java

doesn’t allow multiple inheritance in case of classes but it allows multiple inheritance in case

of interfaces. As interfaces are not yet introduced, I will cover this in future articles.

Why multiple inheritance (among classes) has been removed in Java? Well, there are certain

problems in multiple inheritance. For example, consider that a derived class C inherits from

classes A and B (multiple inheritance). Suppose there are is a variable by the name X in both

classes A and B. Now, if I access X in class C (which is valid due to inheritance) where does X

value come from. Does it come from A or B?

Above problem is also valid for methods and not only for variables. Such situations leads to

ambiguity. To eliminate such ambiguous situations, Java designers voted for removing

multiple inheritance in the case of classes.

super Keyword

Uses of super keyword

Following are the uses of super keyword:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 11

Inheritance, Interfaces, Packages, Exception Handling Java Programming

• To refer the immediate super class constructor

• To refer the immediate super class members

Refer super class constructor:

The super keyword can be used to invoke the constructor of its immediate super class and

pass data to it. Syntax for doing so is given below:

super(parameters-list);

When writing the above statement inside the constructor of the derived class, it must be the

first line. It is a mandatory requirement.

For understanding how this works, let’s consider our previous example:

class Student

{

 private String name;

 private String regdNo;

 private int age;

 Student(String name, String regdNo, int age)

 {

 this.name = name;

 this.regdNo = regdNo;

 this.age = age;

 }

 public void getName()

 {

 System.out.println("Student's name is: "+name);

P. S. Suryateja startertutorials.com [short domain - stuts.me] 12

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 }

 public void getRegdNo()

 {

 System.out.println("Student's registered number is: "+regdNo);

 }

 public void getAge()

 {

 System.out.println("Student's name is: "+age);

 }

}

class CSEStudent extends Student

{

 static final String branch = "CSE";

 CSEStudent(String name, String regdNo, int age)

 {

 super(name, regdNo, age);

 }

 public void getBranch()

 {

 System.out.println("Student's branch is: "+branch);

 }

}

public class Driver

{

 public static void main(String[] args)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 13

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 CSEStudent s1 = new CSEStudent("Teja", "10AB001", 20);

 s1.getName();

 s1.getRegdNo();

 s1.getAge();

 s1.getBranch();

 }

}

In the above example you can see that the data in Student class is made private. We can still

pass data from the derived class CSEStudent to its parent class Student using the super

construct given below:

super(name, regdNo, age);

You can also see that the above statement is the only line inside the CSEStudent class

constructor. If there were multiple lines, the above line must be the first line.

 Refer super class members

Second use of super keyword (in sub class) is to access the hidden members of its immediate

super class. To understand this let’s consider the following example:

class A

{

 int x;

 public void display()

 {

P. S. Suryateja startertutorials.com [short domain - stuts.me] 14

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 System.out.println("This is display in A");

 }

}

class B extends A

{

 int x;

 public void display()

 {

 System.out.println("Value of x in A is: " + super.x);

 super.display();

 System.out.println("This is display in B");

 }

}

class Driver

{

 public static void main(String[] args)

 {

 B obj = new B();

 obj.display();

 }

}

In the above example we can see that we are using the super keyword in two places. First use

is to display the value of variable x of the super class A using the following expression:

super.x

P. S. Suryateja startertutorials.com [short domain - stuts.me] 15

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Second use was for calling the display() method of the super class A in the sub class B using

the following construct:

super.display()

Constructors in Inheritance

Consider two classes participating in simple inheritance. Let A be the super class and B be

the sub class. Now, which constructor is invoked first? Is it the constructor of B followed by

the constructor of A or vice versa? The sequence in which the constructors are invoked is

from super class to sub class i.e, first the constructor of class A is executed then constructor

of class B is executed.

The sequence of constructor invocation does not change even when super keyword is used.

Now let’s consider a few examples to understand how constructors in inheritance works.

Example 1:

class A

{

 A()

 {

 System.out.println("Class A's constructor is invoked");

 }

}

class B extends A

{

 B()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 16

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println("Class B's constructor is invoked");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 A obj = new A();

 }

}

In the above example, object for class A is created. Since A is the super class only it’s

constructor is invoked and the output will be:

Class A’s constructor is invoked

Now let’s look at another example.

Example 2:

class A

{

 A()

 {

 System.out.println("Class A's constructor is invoked");

 }

}

class B extends A

P. S. Suryateja startertutorials.com [short domain - stuts.me] 17

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 B()

 {

 System.out.println("Class B's constructor is invoked");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 B obj = new B();

 }

}

In the above example, we are creating object for the sub class B. Since B is a sub class,

constructor of class A is invoked first and then constructor of class B is invoked. Output for

above program is:

Class A’s constructor is invoked
Class B’s constructor is invoked

Now, let’s look at another example.

Example 3:

class A

{

 A()

 {

 System.out.println("Class A's constructor is invoked");

P. S. Suryateja startertutorials.com [short domain - stuts.me] 18

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 }

}

class B extends A

{

 B()

 {

 System.out.println("Class B's constructor is invoked");

 }

}

class C extends B

{

 C()

 {

 System.out.println("Class C's constructor is invoked");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 C obj = new C();

 }

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 19

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above we can see multi-level inheritance A <- B <- C. The object we are creating is for

sub class C. So the sequence in which constructors are executed is constructor of class A

followed by class B followed by class C. Output of the above program is:

Class A’s constructor is invoked
Class B’s constructor is invoked
Class C’s constructor is invoked

I think above examples are enough to explain constructors in inheritance. If you have any

doubts comment below.

Method Overriding

What is method overriding?

In the context of inheritance, suppose a base class A contains a method display with zero

parameters and sub class B also contains a method display with zero parameters, what

happens when we create an object for class B and call the display method using that object?

The method that will execute is the display method in the sub class B. Then what happened

to the display method in super class A? It was hidden. This process of sub class method

hiding the super class method when both methods contains same method signature is

known as method overriding.

When is method overriding possible?

Method overriding is possible only when the following things are satisfied:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 20

Inheritance, Interfaces, Packages, Exception Handling Java Programming

• A class inherits from another class (inheritance).

• Both super class and sub class should contain a method with same signature.

Note: Method overriding does not depend up on the return type of the method and the

access specifiers like (public, private, protected etc..).

What is the difference between method overloading and method overriding?

Both may look similar but they are quite different in the following ways:

• Method overloading takes place when a class contains multiple methods with the

same name but varying number of parameters or types of parameters.

• Method overriding takes place when two or more classes contains a method with

same signature and all of them are participating in inheritance.

Now let’s look at some examples which demonstrates method overriding.

Example 1:

class A

{

 public void display()

 {

 System.out.println("This is display method of class A");

 }

}

class B extends A

P. S. Suryateja startertutorials.com [short domain - stuts.me] 21

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 public void display()

 {

 System.out.println("This is display method of class B");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 B obj = new B();

 obj.display();

 }

}

In the above example the method display in both classes A and B have same method

signature (method name + number of parameters). So, the display method in class B hides

the display method in class A. Output of the above program is:

This is display method of class B

Now let’s look at another example.

Example 2:

class A

{

 public void display()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 22

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println("This is display method of class A");

 }

}

class B extends A

{

 public void display()

 {

 System.out.println("This is display method of class B");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 A obj = new A();

 obj.display();

 }

}

In the above example, even though there are methods with the same signature, as the object

obj belongs to class A, the display method of class A is executed and the output is:

This is display method of class A

Now let’s consider another example.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 23

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Example 3:

class A

{

 public void display()

 {

 System.out.println("This is display method of class A");

 }

}

class B extends A

{

 public void display(int x)

 {

 System.out.println("This is display method of class B");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 B obj = new B();

 obj.display();

 }

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 24

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above example, notice that the display method in the sub class accepts a single integer

parameter. Now when we call display method as obj.display() in the Driver class, method

overloading takes place and display method of class A is executed. Output of the above

program is:

This is display method of class A

Now let’s consider another example.

Example 4:

class A

{

 public static void display()

 {

 System.out.println("This is display method of class A");

 }

}

class B extends A

{

 public void display()

 {

 System.out.println("This is display method of class B");

 }

}

public class Driver

P. S. Suryateja startertutorials.com [short domain - stuts.me] 25

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 public static void main(String[] args)

 {

 B obj = new B();

 obj.display();

 }

}

In the above example, the display method in the super class A has been declared as a static.

You have to remember that static methods cannot be overridden. So, the above program

gives a compile time error.

Dynamic Method Dispatch

What is dynamic method dispatch?

Dynamic method dispatch is a mechanism which resolves the call to a overridden method at

run-time based on the type of object being referred.

When is dynamic method dispatch possible?

It is possible only when the following are satisfied:

• A class inherits from another class (inheritance)

• Super class variable refers a sub class object

• A overridden method is invoked using the super class reference

P. S. Suryateja startertutorials.com [short domain - stuts.me] 26

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Why dynamic method dispatch?

Dynamic method dispatch is the way to provide run-time polymorphism in Java. Let’s look

at what is static (compile-time) polymorphism and dynamic (run-time) polymorphism.

Before understanding what is the difference between static and dynamic polymorphism,

let’s look at what is method binding. The process of associating or linking a method call with

its definition (body) is known as method binding. This is can take place in two ways: at

compile time or at run-time.

When method binding takes place at compile time it is known as static binding and if the

method binding takes place at run-time it is known as dynamic binding. Static binding

takes place when there is no inheritance or if there is inheritance and the method is specified

as static or final or private, or if the type of reference and type of the object it is referring to

are same. In all other cases it will be dynamic binding.

Now, if the call to a polymorphic method (overloaded or overridden) is bound at compile

time, it is known as static polymorphism or else if the call to a polymorphic method takes

place at run-time it is known as dynamic polymorphism.

Run-time polymorphism always depends on the type of sub class object that is being

referred to by the super class reference. This type of binding is also known as late binding.

Now, let’s look at some code example.

Example 1:

class Shape

{

 void area()

 {

P. S. Suryateja startertutorials.com [short domain - stuts.me] 27

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 System.out.println("Area of shape");

 }

}

class Circle extends Shape

{

 void area()

 {

 System.out.println("Area of circle");

 }

}

class Rectangle extends Shape

{

 void area()

 {

 System.out.println("Area of rectangle");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Shape s = new Shape();

 s.area();

 s = new Circle();

 s.area();

P. S. Suryateja startertutorials.com [short domain - stuts.me] 28

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 s = new Rectangle();

 s.area();

 }

}

In the above example, the call to area() method at line 30 is an example for static

polymorphism. However at lines 31 and 33 the super class (Shape) reference s has been

assigned objects of Circle and Rectangle respectively. Now the subsequent calls to area()

method at lines 32 and 34 are bound at run-time which are an example for run-time

polymorphism. Output of the above program is:

Area of shape
Area of circle
Area of rectangle

So, we can say that run-time polymorphism is possible only when there is inheritance and

dynamic method dispatch.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 29

Inheritance, Interfaces, Packages, Exception Handling Java Programming

abstract Keyword

Uses of abstract keyword

Following are the uses of abstract keyword in Java:

• Used to create abstract methods

• Used to create abstract classes

Creating abstract methods

Sometimes while creating hierarchies, a method inside a super class might not be suitable to

have any kind of implementation. Such methods can be declared as abstract using the

abstract keyword. Syntax for creating an abstract method is as follows:

abstract return-type method-name(parameters-list);

As candidate example for abstract method let’s consider the Shape class from our previous

example:

class Shape

{

 void area()

 {

 System.out.println("Area of shape");

 }

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 30

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above example there is really no need to give implementation for the area() method.

Area of shape doesn’t mean anything without telling what type of shape it is. So, we can

declare area() method as abstract method using the abstract keyword as shown below:

abstract class Shape

{

 abstract void area();

}

Following are the rules associated with abstract methods:

• Abstract methods doesn’t contain any body. It contains only method prototype.

• Abstract methods can only be declared inside abstract classes.

Creating abstract classes

A class declared using the abstract keyword is known as an abstract class. The syntax for

creating an abstract class is as shown below:

abstract class ClassName

{

 //Members of the class

}

Following are the important points that should be remembered about abstract classes:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 31

Inheritance, Interfaces, Packages, Exception Handling Java Programming

• A class which contains at least one abstract method should be declared as abstract

class.

• An abstract class can contain both concrete (non-abstract) and abstract methods.

• Abstract classes cannot be instantiated i.e, objects cannot be created for abstract

classes.

• All abstract methods in a base class must be overridden in the derived class.

Let’s look at an example which demonstrates the use of abstract classes:

abstract class Shape

{

 abstract void area();

}

class Circle extends Shape

{

 void area()

 {

 System.out.println("Area of circle");

 }

}

class Rectangle extends Shape

{

 void area()

 {

 System.out.println("Area of rectangle");

P. S. Suryateja startertutorials.com [short domain - stuts.me] 32

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Shape s;

 s = new Circle();

 s.area();

 s = new Rectangle();

 s.area();

 }

}

Output of above Java code is:

Area of circle
Area of rectangle

Now, let’s look at another example:

abstract class Shape

{

 abstract void area();

 abstract void peri();

}

class Circle extends Shape

{

 void area()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 33

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println("Area of circle");

 }

}

class Rectangle extends Shape

{

 void area()

 {

 System.out.println("Area of rectangle");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Shape s;

 s = new Circle();

 s.area();

 s = new Rectangle();

 s.area();

 }

}

The above Java code will not compile as the sub classes Cirlce and Rectangle doesn’t override

the abstract peri() method.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 34

Inheritance, Interfaces, Packages, Exception Handling Java Programming

final Keyword

Uses of final Keyword

Following are the uses of final keyword in Java:

• To declare constant values

• To make a method non-overridable

• To make a class non-inheritable

The second and third uses of final are applicable only in the context of inheritance. Let’s

look at each of the uses of final keyword in detail.

Declaring constant values

The first use of final is to declare constant values in Java programs. Syntax for declaring a

constant is shown below:

final data-type variable-name = value;

An example for declaring constants is given below:

final float PI = 3.1415;

In Java, you have to assign the value for the constant in the declaration time itself.

final for methods

The final keyword can be used to make a method in base class non-overridable. Syntax for

making a method non-overridable is given below:

final return-type method-name(parameters-list)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 35

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 //Body of the method

}
So, we can say that an abstract method cannot be declared as final.

final for classes

The final keyword can be used to make a class non-inheritable or non-extendable. Syntax

for making a class non-inheritable is given below:

final class Class-Name

{

 //Members of class

}
So, we can say that an abstract class cannot be declared as final.

Let’s consider an example to demonstrate the use of final keyword in inheritance:

abstract class Shape

{

 final void area()

 {

 System.out.println("Area of shape");

 }

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 36

Inheritance, Interfaces, Packages, Exception Handling Java Programming

class Circle extends Shape

{

 void area()

 {

 System.out.println("Area of circle");

 }

}

class Rectangle extends Shape

{

 void area()

 {

 System.out.println("Area of rectangle");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Shape s;

 s = new Circle();

 s.area();

 s = new Rectangle();

 s.area();

P. S. Suryateja startertutorials.com [short domain - stuts.me] 37

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 }

}

The above code when compiled gives errors as the sub classes are trying to override the

area() method in the super class which was declared as final.

Now, let’s look at another example:

final class Shape

{

 void area()

 {

 System.out.println("Area of shape");

 }

}

class Circle extends Shape

{

 void area()

 {

 System.out.println("Area of circle");

 }

}

class Rectangle extends Shape

{

 void area()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 38

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println("Area of rectangle");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Shape s;

 s = new Circle();

 s.area();

 s = new Rectangle();

 s.area();

 }

}

Above code gives errors because the classes Circle and Rectangle are trying to inherit the

Shape class which was declared final (non-inheritable).

P. S. Suryateja startertutorials.com [short domain - stuts.me] 39

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Object Class

In Java the base class or parent class or super class for all other classes is the Object class.

This Object class provides the common functionality for all other objects.

Object Class Methods

Following are different methods provided by the Object class:

clone() method

This method is used to create a new object which is same as the object being cloned. Syntax

of this method is as follows:

Object clone()

equals() method

This method is used to determine whether one object is same as the other object. Syntax of

this method is as follows:

boolean equals(Object obj)

finalize() method

This method is used to write resource clean up code when the object is just to be garbage

collected. Syntax of this method is as follows:

void finalize()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 40

Inheritance, Interfaces, Packages, Exception Handling Java Programming

getClass() method

This method is used to obtain the class of an object at run-time. Syntax of this method is as

follows:

Class getClass()

hashCode() method

This method is used to return the unique number (hash code) associated with an object.

Syntax of this method is as follows:

int hashCode()

notify() method

This method is used to resume the execution of a thread waiting on the invoking object.

Syntax of this method is as follows:

void notify()

notifyAll() method

This method resumes the execution of all the threads waiting on the invoking object. Syntax

of this method is as follows:

void notifyAll()

toString() method

This method is used to return a string that describes the object. Syntax of this method is as

follows:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 41

Inheritance, Interfaces, Packages, Exception Handling Java Programming

String toString()

wait() method

This method is used to make an object wait on another thread of execution. Syntax of this

method is as follows:

void wait()

void wait(long milliseconds)

void wait(long milliseconds, int nanoseconds)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 42

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Interfaces

An interface is a collection of method prototypes (method name followed by parameters list

without any body). The syntax of a method prototype is as follows:

return-type method-name(parameters-list);

An interface can contain only constants and method prototypes. The use of an interface is to

abstract the class’ behavior from its definition. In this way an interface can specify a set of

method prototypes which can be implemented by one or more classes.

Differences between interface and a class

• Objects can be created for classes, where as it is not possible for interfaces.

• Classes can contain methods with body, where as it is not possible in interfaces.

• Classes can contain variables, where as it is not possible in interfaces.

• Some classes can be final, where as interfaces cannot be declared as final.

• Some classes can be abstract, where as interfaces cannot be declared as abstract.

• Various access specifiers like public or private or default can be applied to classes,

where as only public or default access specifier is applicable for top-level interface.

Defining an Interface

The definition of an interface is very much similar to the definition of a class. The syntax for

defining an interface is as follows:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 43

Inheritance, Interfaces, Packages, Exception Handling Java Programming

interface interface-name

{

 return-type method1(parameters-list);

 return-type method2(parameters-list);

 …

 data-type variable-name1 = value;

 data-type variable-name2 = value;

 …

}
Access specifier before interface keyword can be public or default (no specifier). All the

methods inside an interface definition does not contain any body. They end with a semi-

colon after the parameters list. All variables declared inside an interface are by default final

and static. All methods declared inside an interface are by default abstract and both

variables as well as methods are implicitly public. An example for Java interface is as follows:

public interface IMovable

{

 void crawl();

 void run();

 void jump();

}

In the above example, IMovable is the interface name which contains three methods crawl,

run and jump.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 44

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Implementing Interfaces

The methods declared in an interface definition must be implemented by the class which

inherits that interface. This process of a class implementing the methods in an interface is

known as implementing interfaces.

It is mandatory for a class to implement (provide body) all the methods available in an

interface. Otherwise, if a class provides implementation for only some methods (partial

implementation) then the class should be made abstract. The methods of the interface must

be declared as public in the class. Syntax for implementing an interface is as follows:

class ClassName implements InterfaceName

{

 //Implementations of methods in the interface

}
Let’s consider two classes Animal and Person which implements the interface IMovable

defined above:

abstract class Animal implements IMovable

{

 abstract void area();

}

class Person implements IMovable

{

 @Override

 public void crawl()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 45

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println("Person is crawling.");

 }

 @Override

 public void run()

 {

 System.out.println("Person is running.");

 }

 @Override

 public void jump()

 {

 System.out.println("Person is jumping.");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Person ramesh = new Person();

 IMovable obj = ramesh;

 obj.crawl();

 obj.run();

 obj.jump();

 }

P. S. Suryateja startertutorials.com [short domain - stuts.me] 46

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}

In the above example, Person class provides implementation for methods in the interface

IMovable.

Nested Interfaces

An interface which is declared inside a class or another interface is called a nested interface

or a member interface. A nested interface can be declared as public, private or protected.

Let’s look at an example of how to create and use a nested interface:

class A

{

 int x;

 public interface IA

 {

 void method();

 }

}

class B implements A.IA

{

 public void method()

 {

 System.out.println("Method implemented successfully");

 }

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 47

Inheritance, Interfaces, Packages, Exception Handling Java Programming

public class Driver

{

 public static void main(String[] args)

 {

 A.IA obj = new B();

 obj.method();

 }

}

In the above example nested interface is IA. A fully qualified reference must be used (as in

A.IA) to reference a nested interface outside the enclosing class or interface. The output of

the above program is Method implemented successfully.

Applying Interfaces

The real power of interfaces lies in separating the specification of methods from their

implementation in a class. Interfaces enables developers of classes to implement the

methods using different algorithms of their choice. A user can use any of the available

implementations by simply creating an object of that class. An example demonstrating this

use of interfaces is as shown below:

ISwap.java (Interface)

public interface ISwap

{

 void swap(int x, int y);

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 48

Inheritance, Interfaces, Packages, Exception Handling Java Programming

SwapTemp.java (Uses a temporary variable to swap the two values)

public class SwapTemp implements ISwap

{

 public void swap(int x, int y)

 {

 int temp;

 temp = x;

 x = y;

 y = temp;

 System.out.println("After interchange, x = " + x + ", y = " + y);

 }

}

SwapNoTemp.java (Doesn’t use any third variable to swap the two values)

public class SwapNoTemp implements ISwap

{

 public void swap(int x, int y)

 {

 x = x + y;

 y = x - y;

 x = x - y;

 System.out.println("After interchange, x = " + x + ", y = " + y);

 }

}

Driver.java (Main program)

public class Driver

P. S. Suryateja startertutorials.com [short domain - stuts.me] 49

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 public static void main(String[] args)

 {

 ISwap s = new SwapTemp();

 s.swap(10, 20);

 s = new SwapNoTemp();

 s.swap(10, 20);

 }

}

The output of the above program is:

After interchange, x = 20, y = 10
After interchange, x = 20, y = 10

Note that there is no change in the output in the two calls. So, while making the above code

public for users, only source file for the interface and the .class files of the two classes will be

provided.

Variables in Java Interfaces

An interface can contain constants (final variables). A class that implements an interface

containing constants can use them as if they were declared in the class. Example

demonstrating constants in an interface is given below:

IArea.java (interface)

public interface IArea

{

 double PI = 3.142;

P. S. Suryateja startertutorials.com [short domain - stuts.me] 50

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}

Driver.java (Main program which implements the above interface)

public class Driver implements IArea

{

 public static void main(String[] args)

 {

 System.out.println("PI value is: " + PI);

 }

}

In the above code the class Driver.java implements the interface IArea and prints the value

of the constant PI. Output of the above program is: PI value is: 3.142.

Extending Interfaces

Like classes, interfaces can also be extended to provide new functionality. Like classes, we

use extends keyword for extending an interface. Syntax for extending an interface is given

below:

interface NewInterface extends OldInterface

{

 //Method prototypes here

}
Some people might think instead of creating a new interface and extending the existing

interface, why can’t we include the new functionality in the existing interface directly? We

P. S. Suryateja startertutorials.com [short domain - stuts.me] 51

Inheritance, Interfaces, Packages, Exception Handling Java Programming

can’t because the applications of people who are using the existing interface will break if

new functionality is included. To avoid that we create a new interface.

All classes which implement the new interface must provide implementation for all the

methods in the new interface plus for methods in its parent interface. Following example

demonstrates extending an interface:

IArea.java (Parent interface)

public interface IArea

{

 double PI = 3.142;

 void area();

}

IAreaPeri.java (Child interface)

public interface IAreaPeri extends IArea

{

 void peri();

}

Driver.java (Main program)

class Shape implements IAreaPeri

{

 public void area()

 {

 System.out.println("Area of shape");

 }

 public void peri()

P. S. Suryateja startertutorials.com [short domain - stuts.me] 52

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println("Perimeter of shape");

 }

}

public class Driver

{

 public static void main(String[] args)

 {

 Shape s = new Shape();

 s.area();

 s.peri();

 }

}

In the above example, class Shape implements the interface IAreaPeri and provides

implementation for both methods area() and peri(). Output of the above program is:

Area of shape
Perimeter of shape

P. S. Suryateja startertutorials.com [short domain - stuts.me] 53

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Packages

Package Definition

A package is a group of related classes. A package is used to restrict access to a class and to

create namespaces. If all reasonable class names are already used, then we can create a new

package (new namespace) and reuse the class names again. For example a package

mypackage1 can contain a class named MyClass and another package mypackage2 can also

contain a class named MyClass.

Defining or Creating a Package

A package can be created by including the package statement as first line in a Java source

file. Syntax for creating or defining a package is given below:

package mypackage;

In the above syntax, package is a keyword and mypackage is the name of our package. All

the classes that follow the package statement are considered to be a part of the package

mypackage.

Multiple source files can include the package statement with the same package name.

Packages are maintained as regular directories (folders) in the machine. For example, we

have to create a folder named mypackage and store the .class files in that folder.

Following example demonstrates creating a package:

ClassA.java

package mypackage;

P. S. Suryateja startertutorials.com [short domain - stuts.me] 54

Inheritance, Interfaces, Packages, Exception Handling Java Programming

public class ClassA

{

 public void methodA()

 {

 System.out.println("This is methodA in Class A");

 }

}

ClassB.java

package mypackage;

public class ClassB

{

 public void methodB()

 {

 System.out.println("This is methodB in Class B");

 }

}

In the above example, both ClassA and ClassB belong to the same package mypackage.

Remember that the package creation statement should be the first line in the source file.

We can also create a hierarchy of packages as shown below:

package pack1.pack2.pack3;

Remember that packages are normal folders in the file system. So, pack3 is a sub folder in

pack2 and pack2 is a sub folder in pack1.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 55

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Java Packages and CLASSPATH

It is not mandatory that the driver program (main program) and the package(s) to be at the

same location. So how does JVM know the path to the package(s)? There are three options:

1. Placing the package in the current working directory.

2. Specifying the package(s) path using CLASSPATH environment variable.

3. Using the -classpath or -cp options with javac and java commands.

If no package is specified, by default all the classes are placed in a default package. That is

why no errors are shown even if we don’t use a package statement.

By default Java compiler and JVM searches the current working directory (option 1) for

specified package(s) like mypackage. Let’s assume that our package mypackage is stored at

following location:

D:\packages\mypackage

Then we can set the CLASSPATH (option 2) environment variable (in command prompt) to

the location of the package as shown below:

set CLASSPATH = .;D:\packages

The dot (.) before the path specifies the current working directory and multiple paths can be

separated using semi-colon (;).

We can also use -classpath or -cp options (option 3) with javac and java commands as

shown below:

javac -classpath .;D:\packages Driver.java

or

P. S. Suryateja startertutorials.com [short domain - stuts.me] 56

Inheritance, Interfaces, Packages, Exception Handling Java Programming

javac -cp .;D:\packages Driver.java
In the above example, Driver.java is our main program which utilizes the classes in the

package mypackage.

Importing or Using Packages

There are multiple ways in which we can import or use a package. They are as follows:

1. Importing all the classes in a package.

2. Importing only necessary classes in a package.

3. Specifying the fully qualified name of the class.

First way is to import all the classes in a package using the import statement. The import

statement is placed after the package statement if any and before all class declarations. We

can import all the classes in a package as shown below:

import mypackage.*;

* in the above line denotes all classes within the package mypackage. Now you are free to

directly use all the classes within that package. A program which demonstrates importing

all classes in a package is given below:

import mypackage.*;

public class Driver

{

 public static void main(String[] args)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 57

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 ClassA obj1 = new ClassA();

 obj1.methodA();

 ClassB obj2 = new ClassB();

 obj2.methodB();

 }

}

If you want to use only one or two classes in a package, the second way is to specify the class

names instead of * as shown below:

import mypackage.ClassA;

import mypackage.ClassB;
A program which demonstrates importing specific class from a package is given below:

import mypackage.ClassA;

public class Driver

{

 public static void main(String[] args)

 {

 ClassA obj1 = new ClassA();

 obj1.methodA();

 }

}

Suppose if two packages contain a class with same name, then it will lead to compile-time

errors. To avoid this, we have to use the fully qualified name of the class. A fully qualified

P. S. Suryateja startertutorials.com [short domain - stuts.me] 58

Inheritance, Interfaces, Packages, Exception Handling Java Programming

name of the class refers to the name of the class preceded by the package name. An example

that demonstrates a fully qualified name is given below:

public class Driver

{

 public static void main(String[] args)

 {

 mypackage.ClassA obj1 = new mypackage.ClassA();

 obj1.methodA();

 }

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 59

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exception Handling

In general, the errors in programs can be categorized into three types:

• Syntax errors: Also called compile time errors when a program violates the rules of

the programming language. Ex: missing a semi colon, typing a spelling mistake in

keyword etc.

• Run-time errors: Errors which are raised during execution of the program due to

violation of semantic rules or other abnormal behaviour. Ex: dividing a number with

zero, stack overflow, illegal type conversion, accessing an unavailable array element

etc.

• Logic errors: Errors which are raised during the execution of the program due to

mistakes in the logic applied in the program. These are the most severe kind of errors

to detect. Ex: misplacing a minus sign in the place of plus sign, placing a semi colon

at the end of loops etc.

Exception: An abnormal condition that occurs at run-time or a run-time error is known as

an exception.

Exception Handling: Handling exceptions is known as exception handling. Instead of letting

the program crash (terminate abnormally) when an error occurs at run-time, we provide

meaningful error messages to the users by handling the exception(s).

Exception Handling Fundamentals

In Java, abnormal conditions that occur in programs are known as exceptions. Java

exceptions are objects which are thrown when an exception raises. Exceptions which are

P. S. Suryateja startertutorials.com [short domain - stuts.me] 60

Inheritance, Interfaces, Packages, Exception Handling Java Programming

raised must be handled (caught) at some point. Exceptions can be created by Java run-time

system or they can be created manually.

Java aids exception handling by providing five keywords: try, catch, throw, throws, and

finally. Their use is described as follows:

try: Statements that are supposed to raise exception(s) are placed inside a try block.

catch: Code that handles exceptions are placed in catch blocks. A try block must be followed

by one or more catch blocks or a single finally block.

throw: Most of the exceptions are thrown automatically by the Java run-time system. We can

throw exceptions manually using throw keyword.

throws: If a method which raises exceptions doesn’t want to handle them, they can be

thrown to parent method or the Java run-time using the throws keyword.

finally: All the statements that should execute irrespective of whether a exception arises or

not is placed in the finally block.

The general form of an exception handling block looks as follows:

try

{

 //Statements that might arise exceptions

}

catch(ExceptionType1 obj)

{

 //Exception handling code

}

P. S. Suryateja startertutorials.com [short domain - stuts.me] 61

Inheritance, Interfaces, Packages, Exception Handling Java Programming

catch(ExceptionType2 obj)

{

 //Exception handling code

}

//...

finally

{

 //Code that execute even if exception(s) occur or not

}

Note that every try block must be followed by one or more catch blocks or a single finally

block. To aid exception handling, Java provides several pre-defined exception classes. The

root class for all exception classes is Throwable. The hierarchy of exception classes is as

follows:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 62

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exception Types

There are different categorizations of exceptions based on factors given below:

• Nature of exceptions

• Necessity of handling exceptions

• Creation of exceptions

Nature of Exceptions:

Based on nature of exceptions, exceptions are categorized into Exceptions and Errors. Two

direct sub classes of the Throwable class are Exception and Error.

All the sub classes of Exception class are related to exceptions raised in the programmer’s

code. One important sub class is RuntimeException which contains several sub classes

representing exceptions that are automatically handled by the Java run-time system.

Examples of such exceptions are divide by zero, array index out of bounds.

All the sub classes of Error class are related to exceptions related to problems with run-time

system. Examples of such errors are stack overflow and out of memory.

Necessity of Handling Exceptions:

Based on whether it is compulsory to provide exception handling code or not, exceptions are

categorized into checked exceptions and unchecked exceptions.

Exceptions for which providing exception handling is not necessary are known as

unchecked exceptions. All sub classes of RuntimeException class are examples of unchecked

exceptions.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 63

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exceptions which must be handled by the code written by programmer are known as

checked exceptions. Examples of checked exceptions are IOException,

ClassNotFoundException etc.

Creation of Exceptions:

Based on who is providing the exception classes, exceptions are categorized into pre-defined

exceptions (system exceptions) and user-defined exceptions.

All exception classes available with Java are known as pre-defined exceptions or system

exceptions. Exceptions that created by the programmer are known as user-defined

exceptions.

Exception Handling Example

Let’s see a sample Java program which handles “divide by zero” exception. First let’s see the

Java program without using exception handling constructs. The program is given below:

class Divide

{

 public static void main(String[] args)

 {

 int a = 10, b = 0;

 int c = a / b;

 System.out.println("Result is: " + c);

 }

}

The output of the above program is:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 64

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exception in thread “main” java.lang.ArithmeticException: / by zero
at Divide.main(Divide.java:6)

The exception which was automatically generated by Java run-time system was

ArithmeticException which is a sub class of RuntimeException. So, all unchecked exceptions

like ArithmeticException are automatically handled by Java run-time system.

The above output says that the exception was raised in main method, exception raised was

ArithmeticException and the associated message is / by zero, exception was raised in Divide

class, in Divide.java file and on line number 6.

Now, let’s use exception handling constructs to provide our own exception handling code

(message). The program is given below:

class Divide

{

 public static void main(String[] args)

 {

 try

 {

 int a = 10, b = 0;

 int c = a / b;

 System.out.println("Result is: " + c);

 }

 catch(ArithmeticException e)

 {

 System.out.println("b cannot be zero");

 }

P. S. Suryateja startertutorials.com [short domain - stuts.me] 65

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 }

}

Output of above program is:

b cannot be zero

This is how we can use exception handling constructs to handle exceptions in Java.

try and catch Blocks

A Simple try-catch Block

As we know, statements that might raise exceptions are placed inside try block and the

exception handling code is placed inside catch block. A try block must be followed

immediately by one or more catch blocks or a finally block.

Let’s see an example program which catches an array index out of bounds exception:

class ArrayException

{

 public static void main(String[] args)

 {

 try

 {

 int a[] = {1, 2, 3};

 System.out.println("Value is: " + a[4]);

 System.out.println("Another print statement!");

 }

P. S. Suryateja startertutorials.com [short domain - stuts.me] 66

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(e);

 }

 System.out.println("Outside try-catch block");

 }

}

Output of the above program is:

java.lang.ArrayIndexOutOfBoundsException: 4
Outside try-catch block

Whenever an exception is raised in one of the statements of try block, control automatically

enters a subsequent catch block. After the code in the catch block completes execution, the

control moves to the next statement after the try-catch block.

In the above catch block ‘e’ represents the exception object. When printed in the println()

method, the toString() method executes which in turn gives the exception related

information.

Multiple catch Blocks

A try block can be followed by multiple catch blocks to catch different types of exceptions in

the code. Let’s look at a Java program which uses multiple catch blocks:

import java.util.Scanner;

class ArrayException

{

P. S. Suryateja startertutorials.com [short domain - stuts.me] 67

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 public static void main(String[] args)

 {

 try

 {

 Scanner input = new Scanner(System.in);

 int x = 10;

 int y = input.nextInt();

 int z = x / y;

 System.out.println("z = " + z);

 int a[] = {1, 2, 3};

 System.out.println("Value is: " + a[4]);

 System.out.println("Another print statement!");

 }

 catch(ArithmeticException e)

 {

 System.out.println(e);

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(e);

 }

 System.out.println("Outside try-catch block");

 }

}

Output of the above program when z is given the value 2 by the user is:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 68

Inheritance, Interfaces, Packages, Exception Handling Java Programming

z = 5
java.lang.ArrayIndexOutOfBoundsException: 4
Outside try-catch block

Output of the above program when z is given the value 0 by the user is:

java.lang.ArithmeticException: / by zero
Outside try-catch block

When using multiple catch blocks care should be taken that the order of exception classes

must be from sub classes to the super class Exception. For example if the above program is

modified as follows:

import java.util.Scanner;

class ArrayException

{

 public static void main(String[] args)

 {

 try

 {

 Scanner input = new Scanner(System.in);

 int x = 10;

 int y = input.nextInt();

 int z = x / y;

 System.out.println("z = " + z);

 int a[] = {1, 2, 3};

 System.out.println("Value is: " + a[4]);

 System.out.println("Another print statement!");

 }

 catch(Exception e)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 69

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 {

 System.out.println(e);

 }

 catch(ArithmeticException e)

 {

 System.out.println(e);

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(e);

 }

 System.out.println("Outside try-catch block");

 }

}

The above program when compiled will generate errors as the second and third catch blocks

are non-reachable. To eliminate errors place the Exception catch block as the last catch

block.

Nested try Blocks

In Java, try blocks can be nested in one another. In nested try blocks, an exception raised in

the inner try block can be handled by the catch blocks of outer try block. To understand this

let’s look at the following example program:

import java.util.Scanner;

class ArrayException

P. S. Suryateja startertutorials.com [short domain - stuts.me] 70

Inheritance, Interfaces, Packages, Exception Handling Java Programming

{

 public static void main(String[] args)

 {

 try

 {

 Scanner input = new Scanner(System.in);

 int x = 10;

 int y = input.nextInt();

 int z = x / y;

 System.out.println("z = " + z);

 try

 {

 int a[] = {1, 2, 3};

 System.out.println("Value is: " + a[4]);

 }

 catch(ArithmeticException e)

 {

 System.out.println(e);

 }

 System.out.println("Another print statement!");

 }

 catch(ArithmeticException e)

 {

 System.out.println(e);

 }

P. S. Suryateja startertutorials.com [short domain - stuts.me] 71

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(e);

 }

 System.out.println("Outside try-catch block");

 }

}

Notice that in the above program the catch block of inner try is handling

ArithmeticException which is not supposed to raise in the inner try block. So, the array

index out of bounds exception will be handled by the catch block of outer try block.

Output of the above program is:

z = 2
java.lang.ArrayIndexOutOfBoundsException: 4
Outside try-catch block

This is how we use try and catch blocks in Java.

throw throws and finally

throw Keyword

The throw keyword can be used in Java programs to throw exception objects explicitly. The

syntax of using throw is as follows:

throw ThrowableInstance;

P. S. Suryateja startertutorials.com [short domain - stuts.me] 72

Inheritance, Interfaces, Packages, Exception Handling Java Programming

The ThrowableInstance can be object of Throwable class or any of its sub classes. A reference

to the Throwable instance can be obtained using the parameter in catch block or by using

the new operator.

Let’s see a sample program that demonstrates the use of throw:

class ArrayException

{

 public static void main(String[] args)

 {

 try

 {

 throw new ArithmeticException("Testing throw");

 }

 catch(Exception e)

 {

 System.out.println(e);

 throw e;

 }

 }

}

At line 7 throw keyword is used to throw a n object of ArithmeticException with the message

Testing throw. At line 12 we are re-throwing the exception to Java run-time system. Output

of the above program is:

java.lang.ArithmeticException: Testing throw
Exception in thread “main” java.lang.ArithmeticException: Testing
throw
at ArrayException.main(ArrayException.java:8)
P. S. Suryateja startertutorials.com [short domain - stuts.me] 73

Inheritance, Interfaces, Packages, Exception Handling Java Programming

throws Keyword

The throws keyword can be used in method definition to let the caller of a method know

about the exceptions that the method might raise and which are not handled by that

method. The general form of throws is as follows:

type method-name(parameters-list) throws exception-list

{

 //body of method

}
The exception-list is a comma separated list of exceptions that the method might throw.

Except the sub classes of Error and RuntimeException classes all other exceptions (checked

exceptions) must be mentioned explicitly with the throws keyword. Otherwise, it will lead to

compile-time errors.

Let’s see a sample program which demonstrates the use of throws keyword:

class ArrayException

{

 static void myMethod() throws ArithmeticException

 {

 throw new ArithmeticException("Testing throws");

 }

 public static void main(String[] args)

 {

 try

 {

P. S. Suryateja startertutorials.com [short domain - stuts.me] 74

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 myMethod();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Observe that the method myMethod() does not handle ArithmeticException. It throws the

exception to its caller (main method) which in turn handles the exception. We can throw

multiple exceptions using the throws keyword.

finally Keyword

The statements in finally block are guaranteed to be executed irrespective of whether an

exception raises or not. House keeping code like closing the connection to a file or database

can be written in a finally block as it always executes.

Let’s see an example program which demonstrates the use of finally keyword:

class FinallyDemo

{

 public static void main(String[] args)

 {

 try

 {

P. S. Suryateja startertutorials.com [short domain - stuts.me] 75

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 int a[] = {1,2,3,4,5};

 System.out.println("Value is: " + a[4]);

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 System.out.println("Guaranteed to execute");

 }

 }

}

Output of the above program is:

Value is: 5
Guaranteed to execute

Let’s modify the above program so that an exception is raised:

class FinallyDemo

{

 public static void main(String[] args)

 {

 try

 {

 int a[] = {1,2,3,4,5};

 System.out.println("Value is: " + a[8]);

P. S. Suryateja startertutorials.com [short domain - stuts.me] 76

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 System.out.println("Guaranteed to execute");

 }

 }

}

Output of the above program is:

java.lang.ArrayIndexOutOfBoundsException: 8
Guaranteed to execute

User Defined Exceptions

Although Java provides several pre-defined exception classes, sometimes we might need to

create our own exceptions which are also called as user-defined exceptions.

Steps for creating a user-defined exception:

1. Create a class with your own class name (this acts the exception name)

2. Extend the pre-defined class Exception

3. Throw an object of the newly create exception

P. S. Suryateja startertutorials.com [short domain - stuts.me] 77

Inheritance, Interfaces, Packages, Exception Handling Java Programming

As an example for user-defined exception, I will create my own exception named

NegativeException as follows:

class NegativeException extends Exception

{

 String msg = "Value cannot be negative";

 NegativeException() {}

 NegativeException(String str)

 {

 msg = str;

 }

 public String toString()

 {

 return "NegativeException: " + msg;

 }

}

Note that I am overriding the toString() method of the Exception class to provide

meaningful description of my own exception.

Now, I can use my own exception NegativeException in Java programs as shown below:

class NegativeExceptionDemo

{

 public static void main(String[] args)

 {

 try

 {

P. S. Suryateja startertutorials.com [short domain - stuts.me] 78

Inheritance, Interfaces, Packages, Exception Handling Java Programming

 int x = -5;

 if(x < 0)

 {

 throw new NegativeException();

 }

 else

 {

 System.out.println("x = " + x);

 }

 }

 catch(NegativeException e)

 {

 System.out.println(e);

 }

 }

}

Output of the above program is:

NegativeException: Value cannot be negative

From the above program you might have guessed the use of NegativeException. It notifies

the user about negative values which are not allowed as input.

This how we can create and use our own exceptions in Java.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 79

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Assertions

Definition: An assertion is a condition that should be true during the program execution.

They are generally used to detect errors (testing) during development of software. They have

no use after the code is released to the users. They encourage defensive programming.

Creating and Using Assertions:

Assertions can be created using the assert keyword. The general form of using assert

keyword is as follows:

assert condition;

When the given condition becomes false, AssertionError is thrown by the Java run-time. The

second form of assert is as follows:

assert condition : expr;

In the above syntax, expr can be any non-void value which will be passed on to the

constructor of AssertionError and will be displayed as an error message.

Enabling and Disabling Assertions:

For enabling them we have to use the following syntax while executing a Java program:

java -ea ClassName

Where -ea denotes enable assertion and similarly for disabling them we can use the

following syntax:

java -da ClassName

P. S. Suryateja startertutorials.com [short domain - stuts.me] 80

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Where -da denotes disable assertion.

For enabling or disabling assertion in a package we can use the following syntax:

java [-ea | -da] [:package-name… | :ClassName]

Example Program:

Let’s consider a Java program where the numbers entered by the user must not be negative

values. To implement this we can use assert keyword as follows:

import java.util.Scanner;

class AssertionDemo

{

 public static void main(String[] args)

 {

 Scanner input = new Scanner(System.in);

 System.out.println("Enter n: ");

 int n = input.nextInt();

 assert n>0;

 System.out.println("n = " + n);

 }

}

If the n value is given as -9, then output of the above program is:

Exception in thread “main” java.lang.AssertionError
at AssertionDemo.main(AssertionDemo.java:9)

As the above error message does not give much information we can use second form of

assert as shown in the below program:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 81

Inheritance, Interfaces, Packages, Exception Handling Java Programming

import java.util.Scanner;

class AssertionDemo

{

 public static void main(String[] args)

 {

 Scanner input = new Scanner(System.in);

 System.out.println("Enter n: ");

 int n = input.nextInt();

 assert n>0 : "n cannot be negative";

 System.out.println("n = " + n);

 }

}

Now the output of the above program for -9 as n value is:

Exception in thread “main” java.lang.AssertionError:

n cannot be negative
at AssertionDemo.main(AssertionDemo.java:9)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 82

