UNIT -3

INHERITANCE
INTERFACES

PACKAGES
EXCEPTION HANDLING

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Inheritance Concepts

Inheritance is deﬁned as: Deriving properﬁes and behavior of one class to another class.

The class from which things are derived is known as super class and the class in to which
things are derived to is known as sub class. A super class can also be called as base or parent

class and a sub class can also be called as derived or child class.

Inheritance Ve[aﬁonship between two classes is also known as is-a Velationsh'qo or also called
as generalizaﬁon—spec'Laﬁzaﬁon Vela’cionship. When one or more classes have genera[
characteristics, such characteristics are moved to a general class (super class) and only
special characteristics are maintained in the specia[ized class (sub class). Inheritance

Ve[ationsh'qo can loe Vepresented as shown bC[OWI

A

In the above ﬁgwe, class A is super class and class B is sub class. In Java programs,
inheritance is implemented using extends keyword. For examp[e, gC a class B wants to derive

the characteristics of class A, we can write as shown below:

class B extends class A

{
[/Members of class B

}

Let’s look at how inheritance works using a more practical example given below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 1

Inheritance, Interfaces, Packages, Exception Handling

class Student
{
String name;
String Vengo ;
int age;
Student(String name, String regdNo, int age)
{

thisname = name;
this.regdNo = regdNo;
this.age = age;

}

public void getName()

{

System.out.println("Student's name is: "+name);

}
public void getRegdNo()

{

Java Programming

System.out.println("Student's registered number is: "+regdNo);

}
public void getAge()
{

System.out.println("Student's name is: "+age);

}

class CSEStudent extends Student

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Inheritance, Interfaces, Packages, Exception Handling Java Programming

static ﬁna[String branch = "CSE";
CSEStudent(String name, String regdNo, int age)
{

Super(name, Vengo, age);

}
public void getBranch()

{

System.out.println("Student's branch is: "+branch);

}

public class Driver

{
pub[ic static void main(String[] args)

{
CSEStudent s1 = new CSEStudent("Teja", "1oABoo1", 20);

s1.getName();
s1.getRegdNo();
s1getAge)
s1.getBranch();

}

In the above example, class Student is super class and class CSEStudent is sub class. You can
see how general data and code is maintained in the super class and how specific data

(branch and getBranch) is maintained in the sub class. Output of the above program is:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 3

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Student’'s name is: Teja

Student’s registered number is: 10AB001
Student’s name is: 20

Student’s branch is: CSE

Advantages of Inheritance

Fo“owing are the advantages of using inheritance in programs:

° Reusabdd:y The code and methods declared in the base class can be re used in the

derived class.

° Extensibility: Derived classes can be extended to provide new ﬁmcﬁonaﬁty of their

own.
® Data Hiding: Base class can hide some of its data and code by making them private.

® Overriding: Derived classes can have methods with same signature as in base class.
The methods in the derived class provides suitable ﬁmcﬁona[i‘ty which migh’c be

diﬁ‘event ﬁ'om the methods available in the base class.
Disadvantages of Inheritance
Fo“ow'mg are the disadvantages of using inheritance:

® More time taken for the control to reach the base class from derived classes when

there are several levels of inheritance.
® Tight coupling between the base class and derived class.

® Increase in maintenance time as changes done to base class may require changes to

be performed in the derived class.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 4

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Types of Inheritance

There areﬁve types Of inheritance based on l’lOW many ’0&86 c[asses and devived C’.&SSGS are

there in the inheritance relationship. They are as follows:

1. Simple inheritance

2. Multi-level inheritance

3. Multiple inheritance

4. Hierarchical inheritance

5. Hybrid inheritance
Let’s look at each one of these five types of inheritance in more detail.
Simple inheritance:

This is the most frequently used and most simple of the five types of inheritance. In this type
of inheritance there is a sing[e derived class which inherits fvom a s[ng[e base class. This can

be Vepresented pictoriaﬂy as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 5

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above figure, A is base class and B is derived class. This can be converted to Java code

as given below:

class A

{
/IMembers of class A

class B extends A

{
[/Members of class B

}
Multi-level Inheritance

In this type of inheritance there are several classes in the hierarchy forming mu[ﬁple levels.
Each level contains a base class and a derived class. Multi-level inheritance can be

represented as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 6

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above ﬁgwe there are two levels. First level contains A as the base class and B as the
derived class. In the second level B is the base class and C is the derived class. The above

figure can be converted to Java code as given below:

class A

{

[/Members of class A
}
class B extends A
{

//Members of class B

}

class C extends B

{

//Members of class C
}
Multiple nheritance

In this type of inheritance a s'mg[e derived class can inherit ﬁfom two or more base classes.

Mu[ﬁp[e inheritance can be repvesented as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 7

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the aboveﬁgwe A and B are]oase C[&SSGS and Cis J[,/IC derived C[&SS. Aboveﬁgwe can]06

converted to Java code as given below:

class A
{

//Members of class A
}
class B
{

/Members of class B

}
class C extends A,B

{
[/Members of class C

}

Itis important to remember that in Java, we can inherit ﬁfom more than one class. So in the

above code class C extends A, B is syntacﬁca“y incorrect.
Hierarchical nheritance

In this type of inheritance, two or more derived classes inherit from a common base class.

Hierarchical inheritance can be represented as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 8

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above ﬁgwe A is the base class and B, C and D are derived classes. Above ﬁgwe can

be converted to Java code as given below:

class A

{
/IMembers of class A

}

class B extends A

{
//Members of class B

}

class C extends A

{
[/Members of class C

}

class D extends A

{

//Members of class D
}
Hybrid Inheritance

As the name itself implies, hybrid inheritance is a combination of any two or more of the
above mentioned four types of inheritance. Hy’orid inheritance can be Vepresented as shown

IOC[OWI

P.S. Suryateja startertutorials.com [short domain - stuts.me] 9

Inheritance, Interfaces, Packages, Exception Handling

Java Programming

In the above figure you can see hierarchical, single and multi-level inheritance. Above figure

can be converted to Java code as given below:

class A

{
[/Members of class A

}
class B extends A

{
//Members of class B

}

class C extends A

{
[/Members of class C

}

class D extends A

{
[/Members of class D

P.S. Suryateja startertutorials.com [short domain - stuts.me]

10

Inheritance, Interfaces, Packages, Exception Handling Java Programming

class E extends B

{
[/Members of class E

}
Note: 1t is not mandatory to write the classes in a particu[ar order in Java. You can write in

any order that you want.
What types of inheritance does Java support?

Java supports all types of inheritance mentioned above except multiple inheritance. Java
doesn’t allow multiple inheritance in case of classes but it allows multiple inheritance in case

of intevﬁtces. As 'mtevfaces are not yet introduced, 1 will cover this in ﬁitwe articles.

Why mu[t'qo le inheritance (among classes) has been removed in Java? Well, there are certain
problems in multiple inheritance. For example, consider that a derived class C inherits from
classes A and B (mu[tiple inheritance). Suppose there are is a variable]oy the name X in both
classes A and B. Now, if 1 access X in class C (which is valid due to inheritance) where does X

value come ﬁfom. Does it come ﬁfom A or B?

Above problem is also valid for methods and not only for variables. Such situations leads to
ambiguity. To eliminate such ambiguous situations, Java designers voted for removing

mu[tiple inheritance in the case of classes.

super Keyword

Uses of super keyword

FO”OWiVLg are the uses ofsuper keywovd:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 11

Inheritance, Interfaces, Packages, Exception Handling

® To refer the immediate super class constructor

® To refer the immediate super class members

Refer super class constructor:

Java Programming

The super keyword can be used to invoke the constructor of its immediate super class and

pass data to it. Syntax for doing S0 is given below:

super(parameters-list);

When writing the above statement inside the constructor of the derived class, it must be the

ﬁrst line. Itisa mandatory requirement.
For understanding how this works, let’s consider our previous example:

class Student
{
private String name;
private String Vengo ;
private int age;
Student(String name, String regdNo, int age)
{
this.name = name;
this.regdNo = regdNo;
this.age = age;
}
public void getName()

{

System.out.println("Student's name is: "+name);

P.S. Suryateja startertutorials.com [short domain - stuts.me]

12

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}
public void getRegdNo()

{

System.out.printIn("Student's registered number is: "+regdNo);

J
public void getAge()
{

System.out.println("Student's name is: "+age);

}
class CSEStudent extends Student

{
static ﬁna[String branch = "CSE";

CSEStudent(String name, String regdNo, int age)
{

super(name, Vengo, age);

}
public void getBranch()

{
System.out.println("Student's branch is: "+branch);

}

public class Driver

{

pubﬁc static void main(String(] args)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 13

Inheritance, Interfaces, Packages, Exception Handling Java Programming

CSEStudent s1 = new CSEStudent("Teja", "1oABoo1", 20);
s1.getName();
s1.getRegdNo();

st.getAge();
s1.getBranch();

}

In the above example you can see that the data in Student class is made private. We can still
pass data from the derived class CSEStudent to its parent class Student using the super

construct g'wen below:

super(name, regdNo, age);

You can also see that the above statement is the only line inside the CSEStudent class

constructor.]fthere were mu[tiple lines, the above line must be the ﬁrst line.

Refer super class members

Second use of super keyword (in sub class) is to access the hidden members of its immediate

super class. To understand this let’s consider the fo“owing examp le:

class A

{
int x;
public void display()
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 14

Inheritance, Interfaces, Packages, Exception Handling

System.out.println("This is display in A");

}

class B extends A

{
int x;
pub[ic void disp [ayO
{

System.out.println("Value of x in A is: " + super.x);
super. d[sp lay() ;

System.out.printIn("This is display in B");

}

class Driver

{

pu]oﬁc static void main(String(] args)

{
B obj = new B();

obj.disp [ayo ;

}

Java Programming

In the above examp le we can see that we are using the super keyword in two p[aces. First use

is to disp [ay the value of variable x of the super class A using the foUow'mg expression:

super.x

P.S. Suryateja startertutorials.com [short domain - stuts.me]

15

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Second use was for ca“'mg the displayo method of the super class A in the sub class B using

the fo“owing construct:

super.display()

Constructors in Inheritance

Consider two classes participating in simple inheritance. Let A be the super class and B be
the sub class. Now, which constructor is invoked ﬁrs’c? Is it the constructor of B fo“owed by
the constructor of A or vice versa? The sequence in which the constructors are invoked is
from super class to sub class ie, first the constructor of class A is executed then constructor

of class B is executed.

The sequence of constructor invocation does not change even when super keyword is used.

Now let’s consider a few examp[es to understand how constructors in inheritance works.

Example 1.

class A

{
A
{

System.out.printIn("Class A's constructor is invoked");

}

class B extends A

{
B()

P.S. Suryateja startertutorials.com [short domain - stuts.me] 16

Inheritance, Interfaces, Packages, Exception Handling Java Programming

System.out.printIn("Class B's constructor is invoked");

}

pub[ic class Driver

{

pub[ic static void main(StVing[] args)

{
A obj = new A();

}

In the above example, object for class A is created. Since A is the super class only it's

constructor is invoked and the output will be:

Class A’s constructor is invoked

Now let’s look at another examp le.

Example 2:

class A

{
A
{

System.out.printIn("Class A's constructor is invoked");

}

class B extends A

P.S. Suryateja startertutorials.com [short domain - stuts.me] 17

Inheritance, Interfaces, Packages, Exception Handling Java Programming

B()

System.out.printIn("Class B's constructor is invoked");

}

pub[ic class Driver

{

public static void main(String[] args)

{
B obj = new B();

}

In the above examp[e, we are creating object fov the sub class B. Since B is a sub class,
constructor of class A is invoked first and then constructor of class B is invoked. Output for
above program is:

Class A’s constructor is invoked
Class B’s constructor is invoked

Now, let’s look at another examp le.

Example 3:

class A

{
A
{

System.out.printIn("Class A's constructor is invoked");

P.S. Suryateja startertutorials.com [short domain - stuts.me] 18

Inheritance, Interfaces, Packages, Exception Handling

}
class B extends A

{
B()
{

System.out.printIn("Class B's constructor is invoked");

}

class C extends B

{
C(
{

System.out.println("Class C's constructor is invoked");

}

public class Driver

{

pub[ic static void main(Stving[] args)

{
C obj =new C();

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

19

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above we can see multi-level inheritance A <- B <- C. The o’oject we are creaﬁng (s for
sub class C. So the sequence in which constructors are executed is constructor of class A

followed by class B followed by class C. Output of the above program is:

Class A’s constructor is invoked
Class B’s constructor is invoked
Class C’s constructor is invoked

1 think above examp les are enough to exp lain constructors in inheritance.]fyou have any

doubts comment below.

Method Overriding

What is method overriding?

In the context of inheritance, suppose a base class A contains a method display with zero
parameters and sub class B also contains a method disp[ay with zero parameters, what

happens when we create an objec’c for class B and call the dis]o[ay method us'mg that ob ject?

The method that will execute is the disp[ay method in the sub class B. Then what happened
to the display method in super class A? 1t was hidden. This process of sub class method
hid'mg the super class method when both methods contains same method signature is

known as method ovewiding.

When is method overriding possible?

Method ovewiding (s poss'do e only when the fo“ow'mg ’ch'mgs are saﬁsﬁed:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 20

Inheritance, Interfaces, Packages, Exception Handling Java Programming

® A class inherits from another class (inheritance).
® Both super class and sub class should contain a method with same signature.

Note: Method ovewid'mg does not de]oend up on the retwrn type of the method and the

access speciﬁers like (pu’o[ic, private, protected etc..).

What is the difference between method overloading and method overriding?

Both may look similar but they are quite diﬁferent in the fouowing ways:

® Method overloading takes place when a class contains mul’cip[e methods with the

same name but varying number of parameters or types of parameters.

® Method overriding takes place when two or more classes contains a method with

same signature and all of them are participating in inheritance.

Now let’s look at some examples which demonstrates method overriding.

Example 1.

class A

{
pu]o[ie void disp [ayo

{
System.out.println("This is display method of class A");

class B extends A

P.S. Suryateja startertutorials.com [short domain - stuts.me] 21

Inheritance, Interfaces, Packages, Exception Handling Java Programming

pubﬁc void disp [ay()

{
System.out.printIn("This is display method of class B");

pulo[ic class Driver

{

pub[ic static void main(Stving[] args)

{
B obj = new B();

ob)j .dis]o [ay() ;

}

In the above examp[e the method disp[ay in both classes A and B have same method
signature (method name + number of parameters). So, the display method in class B hides

the display method in class A. Output of the above program is:

This is display method of class B

Now let’s look at another examp le.

Example 2:

class A

{
pu]oﬁc void disp [ay()

P.S. Suryateja startertutorials.com [short domain - stuts.me] 22

Inheritance, Interfaces, Packages, Exception Handling Java Programming

System.out.printIn("This is display method of class A");

class B extends A

{
pubﬁc void disp [ay()

{
System.out.printIn("This is display method of class B");

public class Driver

{

pub[ic static void ma'm(Stving[] args)

{
A obj = new A();

ob)j .dis]o [ay() ;

}

In the above example, even though there are methods with the same signature, as the o]qject

obj]oe[ongs to class A, the disp [ay method of class A is executed and the output is:

This is display method of class A

Now let’s consider another example.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 23

Inheritance, Interfaces, Packages, Exception Handling

Example 3:

class A

{
pub[ic void disp [ayo

{
System.out.printIn("This is display method of class A");

class B extends A

{
public void display(int x)

{
System.out.printIn("This is display method of class B");

public class Driver

{
public static void main(String|[] args)

{
B obj = new B();

obj.display();

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

24

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above example, notice that the display method in the sub class accepts a single integer
parameter. Now when we call display method as obj.display() in the Driver class, method
overloading takes place and display method of class A is executed. Output of the above
program is:

This is display method of class A

Now let’s consider another example.

Example 4.

class A

{
pub[ic static void disp [ay()

{
System.out.printIn("This is display method of class A");

class B extends A

{
pubﬁc void disp [ay()

{
System.out.printIn("This is display method of class B");

pu’oﬁc class Driver

P.S. Suryateja startertutorials.com [short domain - stuts.me] 25

Inheritance, Interfaces, Packages, Exception Handling Java Programming

pub[ic static void main(String(] avgs)

{
B obj = new B();

obj.disp[ay() ;

}

In the above examp[e, the disp[ay method in the super class A has been declared as a static.
You have to remember that static methods cannot be overridden. So, the above program

gives a compile time ervor.

Dynamic Method Dispatch

What is dynamic method dispatch?

Dynamic method dispatch is a mechanism which resolves the call to a overridden method at

run-time based on the type of object being referred.

When is dynamic method dispatch possible?

It is possible only when the following are satisfied:
o Aclass inherits from another class (inheritance)
o Super class variable refers a sub class object

® A overridden method is invoked using the super class refevence

P.S. Suryateja startertutorials.com [short domain - stuts.me] 26

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Why dynamic method dispatch?

Dynamic method dispatch is the way to provide run-time polymorphism in Java. Let’s look

at what is static (compi[e-time) po[ymorphism and dynamic (run-time) po[ymorphism.

Before undevstanding what is the dﬁerence between static and dynamic po[ymorphism,
let’s look at what is method binding. The process of associating or linking a method call with
its deﬁniﬁon (body) is known as method ’o'mding. This is can take p[ace in two ways: at

compile time or at run-time.

When method b'mdmg takes place at compi[e time it is known as static ’oind'mg and Lf the
method binding takes place at run-time it is known as dynamic binding. Static binding
takes p[ace when there is no inheritance or gC there is inheritance and the method is speciﬁed
as static or ﬁnal or private, or Lf the type of Veference and type of the o]qject it is Vefew'mg to

are same. In all other cases it will be dynamic binding.

Now, if the call to a polymorphic method (overloaded or overridden) is bound at compile
time, it is known as static polymorphism or else gf the call to a polymorphic method takes

place at run-time it is known as dynamic po[ymorphism.

Run-time polymorphism always depends on the type of sub class object that is being
referred to by the super class reference. This type of binding is also known as late binding.

Now, let’s look at some code examp le.

Example 1.

class Shape
{

void area()

{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 27

Inheritance, Interfaces, Packages, Exception Handling

System.out.println("Area of shape");

}

class Circle extends Shape

{

void area()

{

System.out.printIn("Area of circle");

}

class Rectangle extends Shape

{

void area()

{

System.out.printIn("Area of rectangle");

}

public class Driver

{
public static void main(String[] args)
{
Shape s = new Shape();
s.area();
s = new Circle();

s.area();

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

28

Inheritance, Interfaces, Packages, Exception Handling Java Programming

s = new Rectangle();

s.area();

}

In the above examp[e, the call to area() method at line 30 is an examp[e for static
polymorphism. However at lines 31 and 33 the super class (Shape) reference s has been
assigned objects of Circle and Rectang[e Vespecﬁvely. Now the subsequent calls to area()
method at lines 32 and 34 are bound at run-time which are an examp[e for run-time
polymorphism. Output of the above program is:

Area of shape
Area of circle
Area of rectangle

So, we can say that run-time po[ymorphism is possi’o[e on[y when there is inheritance and

dynamic method dispa’cch.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 29

Inheritance, Interfaces, Packages, Exception Handling Java Programming

abstract Keyword

Uses of abstract keyword
Following are the uses of abstract keyword in Java:
® Used to create abstract methods

® Used to create abstract classes

Creating abstract methods

Sometimes while creating hierarchies, a method inside a super class might not be suitable to
have any kind of implementation. Such methods can be declared as abstract using the

abstract keyword. Syntax for creating an abstract method is as follows:

abstract return-type method-name(parameters-list);

As candidate example for abstract method let’s consider the Shape class from our previous

examp [e :

class Shape
{

void area()

{

System.out.printin("Area of shape");

P.S. Suryateja startertutorials.com [short domain - stuts.me] 30

Inheritance, Interfaces, Packages, Exception Handling Java Programming

In the above examp[e there is VeaUy no need to give 'me[ementaﬁon fov the area() method.
Area of shape doesn’t mean anything without te”ing what type of shape it is. So, we can

declare area() method as abstract method using the abstract keyword as shown below:

abstract class Shape
{

abstract void area() ;

}

Following are the rules associated with abstract methods:
o Abstract methods doesn’t contain any body. 1t contains only method prototype.

® Abstract methods can only be declared inside abstract classes.

Creating abstract classes

A class declared using the abstract keyword is known as an abstract class. The syntax for

cveat'mg an abstract class is as shown below:

abstract class ClassName

[IMembers of the class

Fo“ow'mg are the important points that should be remembered about abstract classes:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 31

Inheritance, Interfaces, Packages, Exception Handling Java Programming

o A class which contains at least one abstract method should be declared as abstract

class.
® An abstract class can contain both concrete (non-abstract) and abstract methods.

o Abstract classes cannot be instantiated i.e, o’ojects cannot be created for abstract

classes.
o All abstract methods in a base class must be overridden in the derived class.
Let’s look at an example which demonstrates the use of abstract classes:

abstract class Shape
{

abstract void avea() ;

}

class Circle extends Shape

{

void area()

{

System.out.printIn("Area of circle");

}
class Rectangle extends Shape

{

void area()

{

System.out.printIn("Area of rectangle");

P.S. Suryateja startertutorials.com [short domain - stuts.me] 32

Inheritance, Interfaces, Packages, Exception Handling

}

public class Driver

{

pubﬁc static void main(String(] avgs)

{
Shape s;
s = new Circle();
s.area();
s = new Rectangle();

s.area();

}
Output of above Java code is:

Area of circle
Area of rectangle

Now, let’s look at another examp le:

abstract class Shape
{

abstract void avea() ;

abstract void peri();
}

class Circle extends Shape

{

void area()

P.S. Suryateja startertutorials.com [short domain

- stuts.me]

Java Programming

33

Inheritance, Interfaces, Packages, Exception Handling Java Programming

System.out.printIn("Area of circle");

}

class Rectangle extends Shape

{

void area()

{

System.out.printIn("Area of rectangle");

}

public class Driver

{
pub[ic static void main(String[] avgs)

{
Shape s;
s = new Circle();
s.area();
s = new Rectangle();

s.area();

}

The above Java code will not compile as the sub classes Cirlce and Rectangle doesn’t override

the abstract peri() method.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 34

Inheritance, Interfaces, Packages, Exception Handling Java Programming

final Keyword

Uses of final Keyword

Following are the uses of final keyword in Java:
® To declare constant values
® Tomake a method non-overridable
® Tomake a class non-inheritable

The second and third uses of ﬁnal are appﬁcab[e only in the context of inheritance. Let’s
look at each of the uses of final keyword in detail.

Declaring constant values

The first use of final is to declare constant values in Java programs. Syntax for declaring a

constant is shown below:

final data-type variable-name = value;

An examp le for dec[aving constants is g'wen below:

final float Pl = 3.1415;
In Java, you have to assign the value for the constant in the declaration time itself.
final for methods

The ﬁnal keyword can be used to make a method in base class non-overridable. Syntax for

making a method non-overridable is given below:

final return-type method-name(parameters-list)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 35

Inheritance, Interfaces, Packages, Exception Handling Java Programming

//Body of the method

}

So, we can say that an abstract method cannot be declared as ﬁna[.

fmal for classes

The final keyword can be used to make a class non-inheritable or non-extendable. Syntax

for making a class non-inheritable is given below:

final class Class-Name

/[IMembers of class

}

So, we can say that an abstract class cannot be declared as ﬁnal.
Let’s consider an examp[e to demonstrate the use of ﬁna[keyword in inheritance:

abstract class Shape

{
fmal void area()

{
System.out.println("Area of shape");

P.S. Suryateja startertutorials.com [short domain - stuts.me] 36

Inheritance, Interfaces, Packages, Exception Handling

class Circle extends Shape

{

void area()

{

System.out.printIn("Area of circle");

class Rectangle extends Shape
{

void area()

{

System.out.printIn("Area of rectangle");

public class Driver

{

public static void main(String[] args)
{

Shape s;

s = new Circle();

s.area();

s = new Rectangle();

s.area();

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

37

Inheritance, Interfaces, Packages, Exception Handling

}

Java Programming

The above code when compiled gives ervors as the sub classes are trying to override the

area() method in the super class which was declared as final.
Now, let’s look at another example:

ﬁna[class Shape
{

void area()

{
System.out.printin("Area of shape");

class Circle extends Shape

{

void area()

{

System.out.printIn("Area of circle");

class Rectangle extends Shape

{

void area()

P.S. Suryateja startertutorials.com [short domain - stuts.me]

38

Inheritance, Interfaces, Packages, Exception Handling Java Programming

System.out.printIn("Area of rectangle");

public class Driver

{

public static void main(String[] args)
{

Shape s

s = new Circle();

sarea();

s = new Rectangle();

s.area();

}

Above code gives errors because the classes Circle and Rectangle are trying to inherit the

Shape class which was declared ﬁna[(non-inheritable).

P.S. Suryateja startertutorials.com [short domain - stuts.me] 39

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Object Class

]n]ava the base class or parent class or super class fov all other classes is the O]qject class.

This Object class provides the common functionality for all other objects.

Object Class Methods

Following are different methods provided by the Object class:

clone() method

This method is used to create a new objec’c which is same as the o’oject ’oeing cloned. Syntax
of this method is as fo“ows:

Object clone()

equals() method

This method is used to determine whether one object is same as the other object. Syntax of

this method is as follows:

boolean equals(Object obj)

finalize() method

This method is used to write resource clean up code when the object is just to be garbage

collected. Syntax of this method is as follows:

void finalize()

P.S. Suryateja startertutorials.com [short domain - stuts.me] 40

Inheritance, Interfaces, Packages, Exception Handling Java Programming

getClass() method

This method is used to obtain the class of an o’oject at run-time. Syntax of this method is as
fo“ows:
Class getClass()

hashCode() method

This method is used to return the unique number (hash code) associated with an o’oject.

Syntax of this method is as fo[lows:
int hashCode()

notify() method

This method is used to resume the execution of a thread waiting on the invoking object.

Syntax of this method is as follows:

void notify()

notifyAll() method

This method resumes the execution of all the threads waiting on the invoking object. Syntax

of this method is as follows:

void notifyAll()

toString() method

This method is used to retwrn a string that describes the object. Syntax of this method is as
follows:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 41

Inheritance, Interfaces, Packages, Exception Handling Java Programming

String toString()

wait() method

This method is used to make an object wait on another thread of execution. Syntax of this

method is as follows:
void wait()
void wait(long milliseconds)

void wait(long milliseconds, int nanoseconds)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 42

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Interfaces

An 'mterface is a collection of method prototypes (method name fouowed loy parameters list

without any body). The syntax of a method prototype is as follows:

return-type method-name(parameters-list);

An intel(face can contain on[y constants and method prototypes. The use of an 'm’celface is to
abstract the class’ behavior from its definition. In this way an interface can specify a set of

method prototypes which can be implemented by one or more classes.

Differences between interface and a class

® Objects can be created for classes, where as it is not possible for interfaces.

® C(lasses can contain methods with body, where as it is not poss'do le in 'mte»faces.
® C(lasses can contain variables, where as it is not possib le in intevfaces.

® Some classes can be final, where as interfaces cannot be declared as final.

® Some classes can be abstract, where as interfaces cannot be declared as abstract.

® Various access specifiers like public or private or default can be applied to classes,

where as on[y pu’oﬁc or dg“au[t access speciﬁer is appﬁcab e for top-leve['mteqface.

Defining an Interface

The deﬁniﬁon of an intelface is very much similar to the dqﬁniﬁon of a class. The syntax fov

deﬁning an 'mtevﬁ;tce is as fo“ows:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 43

Inheritance, Interfaces, Packages, Exception Handling Java Programming

interface interface-name

return-type methodl(parameters-list);

return-type method2(parameters-list);

data-type variable-namel = value;

data-type variable-name2 = value;

}
Access speciﬁer ’oefore 'mtegcace keywovd can be pu’o[ic or defau[t (no speciﬁev). All the

methods inside an 'mtevﬁ;lce deﬁniﬁon does not contain any]oody. They end with a semi-
colon after the parameters list. All variables declared inside an interface are by default final
and static. All methods declared inside an 'mtel(face are by defau[t abstract and both

variables as well as methods are implicitly public. An example for Java interface is as follows:

public interface IMovable
{
void crawl();
void run();
void jump();
}
In the above example, IMovable is the interface name which contains three methods crawl,

run and_jump.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 44

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Implementing Interfaces

The methods declared in an inteUCace deﬁniﬂon must be imp[emented]oy the class which
inherits that inteUCace. This process of a class imp[emenﬁng the methods in an 'mtevface is

known as implementing interfaces.

It is mandatory for a class to implement (provide body) all the methods available in an
intelface. Otherwise, gc a class pvovides imp[ementaﬁon for only some methods (partia[

implementaﬂon) then the class should be made abstract. The methods of the 'mtevface must

be declared as public in the class. Syntax for implementing an interface is as follows:
class ClassName implements InterfaceName

{

/lImplementations of methods in the interface

}

Let’s consider two classes Animal and Person which imp[ements the 'mteqface IMovable

deﬁned a]oove:

abstract class Animal imp lements IMovable

{

abstract void area() ;

class Person imp lements IMovable

{
@Override

pu]o[ic void crawl()

P.S. Suryateja startertutorials.com [short domain - stuts.me] 45

Inheritance, Interfaces, Packages, Exception Handling

}

System.out.printIn("Person is crawling.");

@Override

pubﬁc void run()

{

}

System.out.println("Person is running.");

@Override

pub[ic void Jump 9

{

System.out.println("Person is jumping.");

pub[ic class Driver

{

public static void main(String[] args)

{

P.S. Suryateja

Person ramesh = new Person();
Movable obj = ramesh;
obj.crawl();

obj.run();

obj.jump();

startertutorials.com [short domain - stuts.me]

Java Programming

46

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}

In the above example, Person class provides imp[ementaﬁon fov methods in the 'mtegcace

IMovable.

Nested Interfaces

An interface which is declared inside a class or another interface is called a nested interface
or a member 'mtevface. A nested intelface can be declared as pu’oﬁc, private or protected.

Let’s look at an examp le of how to create and use a nested 'Lntelgcace:

class A
{

int x;
pub[ic intelg(‘ace 1A
{

void method();
}
}
class B implements A.JA
{
public void method()

{
System.out.println("Method implemented successfully");

}

P.S. Suryateja startertutorials.com [short domain - stuts.me] 47

Inheritance, Interfaces, Packages, Exception Handling Java Programming

pub[ic class Driver

{

public static void main(String[] args)
{
AJA obj = new B();
obj.method);

}
In the above example nested interface is 1A. A fully qualified reference must be used (as in

AA) to reference a nested interface outside the enclosing class or interface. The output of

the above program is Method implemented successfully.

Applying tefaces

The real power of interfaces lies in separating the specification of methods from their
implementation in a class. Interfaces enables developers of classes to implement the
methods using different algorithms of their choice. A user can use any of the available
implementations by simply creating an object of that class. An example demonstrating this

use of interfaces is as shown below:

1Swap java (Interface)
pub[ic intelfface 1Swap

{

void swap(int x, int y);
}

P.S. Suryateja startertutorials.com [short domain - stuts.me] 48

Inheritance, Interfaces, Packages, Exception Handling Java Programming

SwapTemp.java (Uses a temporary variable to swap the two values)
public class SwapTemp implements 1Swap
{
public void swap(int x, int y)
{
int temp;
temp = x;
x=Y;
y - temp;

System.out.prin’dn("AﬂeV 'mterchange, x="+x+"y="4+ y) ;

}

SwapNoTemp.java (Doesn’t use any third variable to swap the two values)

pub[ic class SwapNoTemp imp[ements 1Swap

{

pu]o[ic void Swap(int x, int y)

{

X=X+Y;
y=x-y
X=X-Y;

"+y);

System.out.println("After interchange, x ="+ x + ",y =

}
Driver.java (Main program)

pu’olic class Driver

P.S. Suryateja startertutorials.com [short domain - stuts.me]

49

Inheritance, Interfaces, Packages, Exception Handling Java Programming

public static void main(String[] args)
{
1Swap s = new SwapTemp();
s.swap(10, 20);
s = new SwapNoTemp();

s.swap(10, 20);

}
The output of the above program is:

After interchange, x =20,y =10
After interchange, x = 20,y = 10

Note that there is no change in the output in the two calls. So, while making the above code
public for users, only source file for the interface and the .class files of the two classes will be

provided.

Variables in Java Interfaces

An 'mtelface can contain constants (ﬁnal variables). A class that imp[ements an 'm’ce@cace
containing constants can use them as gC they were declared in the class. Example

demonstrating constants in an interface is given below:

1Area java (interface)
pub[ic intelface 1Area

{
double P1 = 3.142;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 50

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}

Driver.java (Main program which implements the above inte‘(face)

public class Driver implements 1Area

{

pub[ic static void main(String(] avgs)

{

System.out.println("Pl value is: " + P1);

}

In the above code the class Driverjava imp[ements the intevface 1Area and prin’cs the value

of the constant P1. Output of the above program is: Pl value is: 3.142.

Extending Interfaces
Like classes, intevﬁ;lces can also be extended to provide new funcﬁona[ity. Like classes, we

use extends keyword for extending an interface. Syntax for extending an interface is given

below:

interface Newlnterface extends OldInterface

//IMethod prototypes here

}

Some peop[e might think instead of creat'mg a new 'mtevface and extending the existing

interface, why can’t we include the new functionality in the existing interface directly? We

P.S. Suryateja startertutorials.com [short domain - stuts.me] 51

Inheritance, Interfaces, Packages, Exception Handling

can’t because the app[icaﬁons of people who are using the existing inteqface will break gf

new ﬁmcﬁona[ity is included. To avoid that we create a new inteqcace.

Java Programming

All classes which implemen’c the new intevface must]mfovide implemen’caﬁon for all the

methods in the new interface plus for methods in its parent interface. Following example

demonstrates extending an interface:

1Area java (Parent interface)
public interface 1Area
{
double P1 = 3.142;
void area();
}
1AreaPerijava (Child interface)
public interface 1AreaPeri extends 1Area
{
void perio ;
}
Driver.java (Main program)
class Shape implements 1AreaPeri

{
public void area()

{
System.out.printin("Area of shape");

}
pub[ic void peri()

P.S. Suryateja startertutorials.com [short domain - stuts.me]

52

Inheritance, Interfaces, Packages, Exception Handling

System.out.printIn("Perimeter of shape");

public class Driver

{

pub[ic static void main(String(] args)

{
Shape s = new Shape();

s.area();

s.peri();

}

Java Programming

In the above example, class Shape implements the interface 1AreaPeri and provides

implementation for both methods area() and peri(). Output of the above program is:

Area of shape
Perimeter of shape

P.S. Suryateja startertutorials.com [short domain - stuts.me]

53

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Packages

Package Definition

A package is a group of related classes. A package is used to restrict access to a class and to
create namespaces. If all reasonable class names are already used, then we can create a new
package (new namespace) and reuse the class names again. For example a package
mypackager can contain a class named MyClass and another package mypackagez can also

contain a class named MyClass.

Defining or Creating a Package

A package can be created by including the package statement as first line in a Java source
file. Syntax for creating or defining a package is given below:

package mypackage;

In the above syntax, package is a keyword and mypackage is the name of our package. All
the classes that follow the package statement are considered to be a part of the package

mypac kage .

Mu[ﬁp[e source ﬁles can include the package statement with the same package name.
Packages are maintained as regular directories (folders) in the machine. For example, we
have to create a folder named mypackage and store the .class files in that folder.

Fo“owing examp le demonstrates cveaﬁng a package:

ClassA java
package mypackage;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 54

Inheritance, Interfaces, Packages, Exception Handling Java Programming

pub[ic class ClassA

{
public void methodA()

{
System.out.printin("This is methodA in Class A");

}
C[assB:java

package mypackage;

pub[ic class ClassB

{
public void methodB()

{
System.out.println("This is methodB in Class B");

}
In the above example, both ClassA and ClassB belong to the same package mypackage.

Remember that the package creation statement should be the first line in the source file.

We can also create a hievarchy of packages as shown below:

package packl.pack2.packs3;

Remember that packages are normal folders in the file system. So, packs is a sub folder in

packz and packz is a sub folder in pack:.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 55

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Java Packages and CLASSPATH

It is not manda’covy that the driver program (main progvam) and the package(s) to be at the

same location. So how doesJVM know the pa’ch to the package(s)? There are three options:
1. Placing the package in the current working directory.
2. Specifying the package(s) path using CLASSPATH environment variable.
3. Using the -classpath or ~cp options withjavac and Java commands.

]fno package (s speciﬁed, ’oy deﬁmlt all the classes are p[aced ina dqfau[t package. That is

why no ervors are shown even if we don’t use a package statement.

By default Java compiler and JVM searches the current working directory (option 1) for
speciﬁed package(s) like mypackage. Let’s assume that our package mypackage is stoved at

foﬂowing location:

D:\packages\mypackage

Then we can set the CLASSPATH (option 2) environment variable (in command prompt) to

the location of the package as shown below:
set CLASSPATH = .;D:\packages

The dot () before the path specifies the current working directory and multiple paths can be

separated using semi-colon (;).

We can also use —c[asspa’ch or -cp options (opﬁon 3) with Javac and Java commands as

SI/IOWVI be[ow:

javac -classpath .;D:\packages Driver.java

or

P.S. Suryateja startertutorials.com [short domain - stuts.me] 56

Inheritance, Interfaces, Packages, Exception Handling Java Programming

javac -cp .;D:\packages Driver.java
In the above example, Driver.java is our main program which utilizes the classes in the

package mypackage.

Importing or Using Packages

There are multiple ways in which we can import or use a package. They are as follows:
1. Importing all the classes in a package.
2. Importing only necessary classes in a package.
3. Specifying the fully qualified name of the class.

First way is to 'meort all the classes in a package using the 'meor’c statement. The import
statement is placed aﬁev the package statement gC any and ’oefore all class declarations. We

can meort a“ the c[asses ina package as shown be[ow:

Import mypackage.*;

* in the above line denotes all classes within the package mypackage. Now you are ﬁree to
directly use all the classes within that package. A program which demonstrates importing

all classes in a package is given below:

import mypackage.*;

public class Driver

{
public static void main(String[] args)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 57

Inheritance, Interfaces, Packages, Exception Handling Java Programming

ClassA obji = new ClassA();
obji.methodA();
ClassB objz = new ClassB();
objz.methodB();

}

]fyou want to use only one or two classes in a package, the second way is to spec@ﬁ/ the class

names instead of * as shown below:

Import mypackage.ClassA;

import mypackage.ClassB;

A program which demonstrates importing speciﬁc class fvom a package is given below:

import mypackage.C[assA;

public class Driver

{

pubﬁc static void main(String(] avgs)

{
ClassA obj1 = new ClassA();

obj1 methodA();

}

Suppose gC two packages contain a class with same name, then it will lead to compile—ﬂme

errors. To avoid this, we have to use the fully qualified name of the class. A fully qualified

P.S. Suryateja startertutorials.com [short domain - stuts.me] 58

Inheritance, Interfaces, Packages, Exception Handling Java Programming

name of the class Vefers to the name of the class]oreceded ’oy the package name. An example

that demonstrates a ﬁd[y qua[iﬁed name is given below:

pub[ic class Driver

{

pu]o[ic static void main(StVing[] args)

{
mypackage.ClassA obji = new mypackage.ClassA();

ob j1 methodA();

P.S. Suryateja startertutorials.com [short domain - stuts.me] 59

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exception Handling

In genera[, the errors in programs can be categorized into three types:

® Syntax ervors: Also called compile time ervors when a program violates the rules of
the programming language. Ex: missing a semi colon, typing a spelling mistake in

keyword etc.

® Run-time errors: Errors which are raised during execution of the program due to
violation of semantic rules or other abnormal behaviour. Ex: dividing a number with
zero, stack overflow, illegal type conversion, accessing an unavailable array element

etc.

o]_ogw errors: Errors which are raised during the execution of the program due to
mistakes in the [ogic appﬁed in the program. These are the most severe kind of errors

to detect. Ex: misplacing a minus sign in the place of plus sign, placing a semi colon

at the end of loops etc.

Exceptiom An abnormal condition that occurs at run-time or a run-time error is known as

an exception.

Exception Handling: Handling exceptions is known as exception handling. Instead of letting
the program crash (terminate abnormally) when an ervor occurs at run-time, we provide

meaningful ervor messages to the users by handling the exception(s).
Exception Handling Fundamentals

In Java, abnormal conditions that occur in programs are known as exceptions. Java

excepﬁons are o’ojects which are thrown when an exception raises. Exceptions which are

P.S. Suryateja startertutorials.com [short domain - stuts.me] 60

Inheritance, Interfaces, Packages, Exception Handling Java Programming

raised must be handled (caught) at some point. Exceptions can be created by Java run-time

system or they can be created manuaﬂy.

Java aids exception handﬁng]oy providing ﬁve keywords: try, catch, throw, throws, and
fmally. Their use is described as follows:

try: Statements that are supposed to raise exception(s) are placed inside a try block.

catch: Code that handles exceptions are placed in catch blocks. A try block must be followed

by one or more catch blocks or a single finally block.

throw: Most of the excepﬁons are thrown automaﬁca[[y]oy the_]ava run-time system. We can

throw exceptions manuaUy using throw keyword.

throws:]f a method which raises exceptions doesn’t want to handle them, they can be

thrown to parent method or the Java run-time using the throws keyword.

ﬂnaﬂy: All the statements that should execute irrespective of whether a exception arises or

not is placed in the finally block.

The general form of an exception handling block looks as follows:

try
{

[[Statements that might arise exceptions

}
catch(ExcepﬁonType1 o]qj)

{
[[Exception hand[ing code

P.S. Suryateja startertutorials.com [short domain - stuts.me] 61

Inheritance, Interfaces, Packages, Exception Handling Java Programming

catch(ExceptionTypez obj)

{
//Exception handling code

}
/..
finally
{
//Code that execute even if exception(s) occur or not
}
Note that every try block must be followed by one or more catch blocks or a single finally
block. To aid exception handling, Java provides several pre-defined exception classes. The

root class for all exception classes is Throwable. The hievarchy of exception classes is as

follows:

T | LinkageError el
—:; Error < VirtualMachineError Unchecked Exceptions \\\
'\" ._‘I
N — AWTError — ArithmeticException .
Throwable < '\ ‘\‘
N - T — NullPointerException Y
\'“u,_ _L_j RuntimeException j— ArrayIndexOutOfBoundException I:
—_—— S— .
— Exception . B
P <]__ AWTException i [1 I1legalArgumentException @
] #
— IOException q_““— ------ mmmmmmmms -
Lo... InterruptedIOException

Checked Exceptions
(MUST be caught or declared to be thrown)

EOFException

FileNotFoundException

P.S. Suryateja startertutorials.com [short domain - stuts.me] 62

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exception Types

There are different categorizations of exceptions based on factors given below:
® Nature of exceptions
® Necessity of handling exceptions
® Creation of exceptions

Nature of Exceptions:

Based on nature of exceptions, exceptions are categorized into Exceptions and Errors. Two

direct sub classes of the Throwable class are Exception and Error.

All the sub classes of Exception class are velated to exceptions raised in the programmer’s
code. One important sub class is RuntimeException which contains several sub classes
representing exceptions that are automatically handled by the Java run-time system.

Examples of such exceptions are divide]oy zero, array index out of bounds.

All the sub classes of Error class are related to exceptions related to pro’olems with run-time

System. Examples OfSMCh errors are Stac”{ OveVﬂOW and out Ofmemory.
Necessity of Handling Exceptions:

Based on whether it is compulsory to provide exception handling code or not, exceptions are

categorized into checked exceptions and unchecked exceptions.

Exceptions for which provid'mg excepﬂon hand[ing is not necessary are known as
unchecked exceptions. All sub classes of RuntimeException class are examples of unchecked

excepﬁons.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 63

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exceptions which must be handled by the code written]oy programmer are known as
checked exceptions. Examp[es of checked exceptions are 10Exception,

ClassNotFoundException etc.

Creation of Exceptions:

Based on who is providing the exception classes, exceptions are categorized into pre-defined

exceptions (system exceptions) and user-defined exceptions.

All exception classes available with Java are known as pre-defined exceptions or system
exceptions. Exceptions that created by the programmer are known as user-defined

exceptions.

Exception Handling Example

Let’s see a sample Java program which handles “divide by zero” exception. First let’s see the

Java program without using exception handling constructs. The program is given below:

class Divide

{
public static void main(String[] args)

{

inta=10,b=o;
intc=a/b;

System.out.printin("Result is: " + ¢);

}
The output of the above program is:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 64

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Exception in thread “main” java.lang.ArithmeticException: / by zero
at Divide.main(Divide.java:6)

The exception which was automatically generated by Java run-time system was
ArithmeticException which is a sub class of RuntimeException. So, all unchecked exceptions

like ArithmeticException are automatically handled by Java run-time system.

The above output says that the exception was raised in main method, exception raised was
ArithmeticException and the associated message is / by zevo, exception was raised in Divide

class, in Divide java file and on line number 6.

Now, let’s use exception handling constructs to provide our own exception handling code

(message). The program is given below:

class Divide

{

public static void main(String[] args)

{

try
{

inta=10,b=o;
intc=a/b;
System.out.println("Result is: " + ¢);

}
catch(ArithmeticException e)

{

System.out.println("b cannot be zero");

P.S. Suryateja startertutorials.com [short domain - stuts.me] 65

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}
Output of above program is:

b cannot be zero

This is how we can use exception handling constructs to handle exceptions in Java.

try and catch Blocks

A Simple try-catch Block

As we know, statements that might raise exceptions are placed inside try block and the
exception handling code is placed inside catch block. A try block must be followed

immediately on one or more catch blocks or a ﬁna“y block.
Let’s see an examp[e program which catches an array index out of bounds excepﬁon:

class ArrayException

{
public static void main(String[] args)
{

try

{
intaf] ={1,2 3}
System.out.println("Value is: " + a[4]);

System.out.println("Another print statement!");

P.S. Suryateja startertutorials.com [short domain - stuts.me] 66

Inheritance, Interfaces, Packages, Exception Handling Java Programming

catch(ArraylndexOutOfBoundsException e)

{
System.out.println(e);

}
System.out.println("Outside try-catch block");

}
Output of the above program is:

java.lang.ArraylndexOutOfBoundsException: 4
Outside try-catch block

Whenever an exception is raised in one of the statements of try block, control automatically
enters a su]osequent catch block. Aﬂer the code in the catch block comp[etes execution, the

control moves to the next statement agcter the try—catch block.

In the above catch block ‘¢’ represents the exception object. When printed in the pr'mt[n()
method, the toString() method executes which in tumn gives the exception rvelated

information.

Mudltiple catch Blocks

Atry block can be foﬂowed ’oy mu[ﬁp le catch blocks to catch diﬂ%rent types of exceptions in

the codle. Let’s look at a Java program which uses multiple catch blocks:

import java.uﬂl.ScanneV;

class ArrayException

{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 67

Inheritance, Interfaces, Packages, Exception Handling Java Programming

pu]o[ic static void main(StVing[] args)

{

try
{

Scanner input = new Scanner(System.in);
int x =10;

int y = mput.nextl nt();

ntz=x/y;

n

System.out.println("z =" + z);
int aH = {1) 2, 3}:
System.out.println("Value is: " + a[4]);

System.out.println("Another print statement!");

}
catch(ArithmeticException e)

{

System.ou’c.prinﬂn(e);

}
catch(ArrayindexOutOfBoundsException e)

{
System.out.println(e);

}

System.out.println("Outside try-catch block");

}

Output of the above program when z is given the value 2]oy the user is:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 68

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Z=5
java.lang.ArraylndexOutOfBoundsException: 4
Outside try-catch block

Output of the above program when z is given the value o]oy the user is:

java.lang.ArithmeticException: / by zero
Outside try-catch block

When using multiple catch blocks care should be taken that the order of exception classes

must be fvom sub classes to the super class Excepﬁon. For examp[e gC the above program is

modiﬁed anO“OWSZ

import java.uﬁl.ScanneV;
class ArrayException

{

pub[ic static void main(String(] avgs)

{

try

{
Scanner input = new Scanner(System.in);
int x =10;
int y = mput.nextl nt();
intz=x/y;
System.out.println("z =" + z);
intal] = {1, 2,3};
System.out.println("Value is: " + a[4]);
System.outprinﬂn("Another print statement! ");

}

catch(Exception e)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 69

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Sys’cem.out.prinﬂn(e) ;

}

catch(ArithmeticException e)

{

System.out.println(e);

}
catch(ArraylndexOutOfBoundsException e)

{

System.out.prinﬂn(e) ;

}
System.out.println("Outside try-catch block");

}

The above program when compiled will generate ervors as the second and third catch blocks

are non-reachable. To eliminate errors place the Excepﬁon catch block as the last catch

block.

Nested try Blocks

In Java, try blocks can be nested in one another. In nested try blocks, an exception raised in
the inner try block can be handled by the catch blocks of outer try block. To understand this

let’s look at the following example program:

import java.uﬁl.Scanner;

class ArrayException

P.S. Suryateja startertutorials.com [short domain - stuts.me] 70

Inheritance, Interfaces, Packages, Exception Handling

pubﬁc static void main(String(] avgs)

{
try

}

Scanner input = new Scanner(System.in);

int x =10;

int y = mput.nextl nt();

ntz=x/y;

System.out.printin("z =" + z);

try

{
intal] ={1,2,3};
System.out.println("Value is: " + a[4]);

}

catch(ArithmeticException e)

{

System.out.println(e);

}
System.out.println("Another print statement!");

catch(ArithmeticException e)

{

P.S. Suryateja

System.out.println(e);

startertutorials.com [short domain - stuts.me]

Java Programming

71

Inheritance, Interfaces, Packages, Exception Handling Java Programming

catch(ArraylndexOutOfBoundsException e)

{
System.out.println(e);

}
System.out.println("Outside try-catch block");

1
Notice that in the above program the catch block of nner try s handﬁng

ArithmeticException which is not supposed to raise in the inner try block. So, the array
index out of bounds exception will be handled by the catch block of outer try block.

Output of the above program is:

z=2
java.lang.ArraylndexOutOfBoundsException: 4
Outside try-catch block

This is how we use try and catch blocks in Java.

throw throws and finally

throw Keyword

The throw keyword can be used in Java programs to throw exception objects explicitly. The
syntax of using throw is as follows:

throw Throwablelnstance;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 72

Inheritance, Interfaces, Packages, Exception Handling Java Programming

The Throwablelnstance can be o’oject of Throwable class or any of its sub classes. A Veference
to the Throwable instance can be obtained using the parameter in catch block or loy using

the new operator.
Let’s see a sample program that demonstrates the use of throw:

class ArrayException

{

pub[ic static void main(Stving[] avgs)

{

try
{

throw new ArithmeticException("Testing throw");

}
catch(Exception e)

{
System.out.print n(e);

throw e;

}

At line 7 throw keyword is used to throw a n object of ArithmeticException with the message
Testing throw. At line 12 we are re-throwing the exception to Java run-time system. Output

of the above program is:

java.lang.ArithmeticException: Testing throw

Exception in thread “main” java.lang.ArithmeticException: Testing
throw

at ArrayException.main(ArrayException.java:8)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 73

Inheritance, Interfaces, Packages, Exception Handling Java Programming

throws Keyword

The throws keyword can be used in method deﬁniﬂon to let the caller of a method know
about the exceptions that the method migh’c raise and which are not handled by that

method. The general form of throws is as follows:
type method-name(parameters-list) throws exception-list

{

//body of method

}

The exce]oﬁon-list is a comma separated list of exceptions that the method might throw.
Except the sub classes of Error and RuntimeException classes all other exceptions (checked
exceptions) must be mentioned explicitly with the throws keyword. Otherwise, it will lead to

compile-time errors.
Let’s see a sample program which demonstrates the use of throws keyword:

class ArrayException

{
static void myMethod() throws ArithmeticException

{

throw new ArithmeticException("Testing throws");

}

pub[ic static void main(StVing[] args)

{

try
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 74

Inheritance, Interfaces, Packages, Exception Handling Java Programming

myMethod();

}
catch(Exception e)

{

System.out.pﬂnﬂn(e) ;

J
Observe that the method myMethod() does not handle ArithmeticException. 1t throws the

exception to its caller (main method) which in twn handles the exception. We can throw

mu[tiple exceptions using the throws keyword.

finally Keyword

The statements in finally block are guaranteed to be executed irrespective of whether an
exception raises or not. House keeping code like closing the connection to a file or database

can be written in a finally block as it always executes.
Let’s see an example program which demonstrates the use of finally keyword:

class Fina“yDemo

{

public static void main(String[] args)

{

try
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 75

Inheritance, Interfaces, Packages, Exception Handling

int a[] = {1,2,3,4,5};

System.out.printin("Value is: " + a[4]);

}

catch(Exception e)

{

System.out.println(e);

System.out.println("Guaranteed to execute");

1
Outpu’c of the above program is:

Value is: 5
Guaranteed to execute

Let's modify the above program so that an exception is raised:

class FinallyDemo

{

public static void main(String[] args)
{
try
{
inta[] = {123.45)

System.out.println("Value is: " + a[8]);

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

76

Inheritance, Interfaces, Packages, Exception Handling Java Programming

}
catch(Exception e)

{

System.out.print[n(e);

System.out.printin("Guaranteed to execute");

J
Output of the above program is:

java.lang.ArraylndexOutOfBoundsException: 8
Guaranteed to execute

User Defined Exceptions

A[though]ava pvovides several pre—deﬁned exception classes, sometimes we might need to

create our own exceptions which are also called as user-defined exceptions.
Steps for creating a user-defined exception:
1. Create a class with your own class name (this acts the exception name)
2. Extend the pre-defined class Exception

3. Throw an object of the newly create exception

P.S. Suryateja startertutorials.com [short domain - stuts.me] 77

Inheritance, Interfaces, Packages, Exception Handling Java Programming

As an examp[e for user—deﬁned exception, | will create my own exception named

NegativeException as foﬂows:

class NegativeException extends Exception
{
String msg = "Value cannot be negative';
NegaﬁveExcepﬁonO {}
NegativeException(String str)
{
msg = st;
}
public String toString()

{

retwrn "NegativeException: " + msg;

J
Note that 1 am overriding the toString() method of the Exception class to provide

meaningful description of my own exception.
Now, 1 can use my own exception NegativeException in Java programs as shown below:

class NegativeExceptionDemo

{

public static void main(String[] args)

{

try
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 78

Inheritance, Interfaces, Packages, Exception Handling Java Programming

int x = -5;
iflx<o)
{

throw new NegativeException();

else

n

System.out.println("x =" + x);

}

catch(NegativeException e)

{

System.out.print n(e);

]
Output of the above program is:

NegativeException: Value cannot be negative

From the above program you might have guessed the use of NegativeException. 1t notifies

the user about negaﬁve values which are not allowed as input

This how we can create and use our own exceptions in Java.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 79

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Assertions

Definition: An assertion is a condition that should be true during the program execution.
They are generally used to detect ervors (testing) during development of software. They have

no use after the code is veleased to the users. They encourage defensive programming.

Creating and Using Assertions:

Assertions can be created us'mg the assert keyword. The genera[form of us'mg assert

keyword is as fo“ows:

assert condition;

When the given condition becomes false, AssertionError is thrown by the Java run-time. The

secondfovm ofassert is anO”OWSI

assert condition : expr;

In the above syntax, expr can be any non-void value which will be passed on to the

constructor of AssertionErvor and will be displayed as an error message.

Enabling and Disabling Assertions:

For enabling them we have to use the following syntax while executing a Java program:

java -ea ClassName

Where -ea denotes enable assertion and similarly for disabling them we can use the

following syntax:

java -da ClassName

P.S. Suryateja startertutorials.com [short domain - stuts.me] 80

Inheritance, Interfaces, Packages, Exception Handling Java Programming

Where -da denotes disable assertion.

For enabling or disabling assertion in a package we can use the following syntax:

java [-ea | -da] [:package-name... | :ClassName]

Example Program:

Let’s consider a Java program where the numbers entered by the user must not be negative

values. To 'me lement this we can use assert keyword as fo“ows:

import java.util.Scanner;
class AssertionDemo

{
public static void main(String[] args)

{
Scanner input = new Scanner(System.in);
System.out.printin("Enter n: ");
int n = input.nextint();
assert n>o;

System.out.println('m =" +n);

}

]f’che nvalue is given as -9, then output of the above program is:

Exception in thread “main” java.lang.AssertionError
at AssertionDemo.main(AssertionDemo.java:9)

As the above error message does not give much information we can use second form of

assert as shown in the below program:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 81

Inheritance, Interfaces, Packages, Exception Handling Java Programming

import java.util.Scanner;
class AssertionDemo

{

pub[ic static void main(StVing[] args)

{

Scanner input = new Scanner(System.in);
System.out.printin("Enter n: ");

intn= inputnexﬂnt();

assert n>0 : "m cannot be negative";

System.out.println('m =" +n);

}

Now the output of the above program for -9 as n value is:

Exception in thread “main” java.lang.AssertionError:

n cannot be negative

at AssertionDemo.main(AssertionDemo.java:9)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 82

