UNIT -2

CORE JAVA BASICS

Core Java Basics JAVA PROGRAMMING

Structure of a Java program

Structure of a Java class is as shown below:

Structure of a Java class

Package statement [Optional] [Must be the first line if written. Only execption is comments]
Import statement(s) [Optional]
Comments [Optional] [Can be written anywhere in the code]

Class declaration

1
Variable declarations
Comments

Constructors _
Methods These things can be

Nested Classes written in any order

Nested Interfaces and all are optional
Enums

Starterfutorials.com

A Java class can contain the following:

O Package statement: A package statement is used to declare a Java class as a part of
the specified package. More on declaring packages later. Package statement is
optional. When we decide to write a package statement, it should be the first

statement in the file. Only exception to this rule is writing comments.

O Tmport statement(s): We can write one or more import statements. These are also
optional. An import statement is used to link our class with other classes in the same
package or other packages to use their functionality. More on import statement in

other articles.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 1

Core Java Basics Java Programming

O Comments: We can write one or more comments in a Java class to explain the use of
certain statements or pvovide extra infownaﬁon like purpose of the class, author’s
name, date and time of creation etc. Comments are optional. Comments can be
written in the first line or anywhere in the program. More on writing comments

[ater.

O Class declaration: A class declaration consists of the class keyword followed by the
class name, which is followed by the body of the class represented using braces { J. A

class declaration can contain the following:
O Variable declarations
O Comments
O Constructors
O Methods
O Nested classes
O Nested interfaces
O Enuwmerations
All the above elements (variable declarations, comments etc...) can occur in any order.

Now, let’s look at the structure of a Java program. 1t will be as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 2

Core Java Basics

Structure of a Java class

Java Programming

Package statement [Optional] [Must be the first line If written. Only execplion Is comments)

Impert statement(s) [Optional]
Comments [Optional] [Can be writien anywhere In the code]
= declaration

clarathans
Thaee hings can be

Mested Inlerfaces and all are optienal
Enums

class Class1

class Class2

As 1 had already mentioned above, a Java program is a set of one or more classes in which

each class will be declared following the structure of a Java class and one of the classes will

class Class3

{

main()

Startertutorials.com

have a main method to start the execution of the Java program.

P.S. Suryateja

startertutorials.com [short domain - stuts.me]

Core Java Basics Java Programming

Classes and Objects

Accovding to o[oject orientation, a class is a temp[ate or]o[ueprint for creating objects. An
object is an instance of a class. To understand a Java class and object easily let’s consider a

real world example of boys and girls as shown below:

class—p
S

objects

(888

p |

Faiza

Rita

1

Shelly Mary

Jeevan

George

Ken

Kishore

Prasad

:

In the above examp[e, the classes are boy and g'w[. Ob_jects are Faiza, Rita, She“y, Mary, Rose,

George, Ken, Prasad, Kishore andjeevan.

1f we declare the boy as a class in Java, it will be something as shown below:

class Boy

{
String name;
String address;
int age;

P.S. Suryateja

startertutorials.com [short domain - stuts.me]

Core Java Basics Java Programming

void tellName(){ };
void te“AddressO{ k
void tellAge(){ }

}

Declaring a class for girl is left to you as an exercise.

Now, let’s create an oloject, say, George. In Java, we create objec’ts as shown below:

Boy george = new Boy() ;

Again creating other objects is left as an exercise for you.

Class:

To declare a class in Java, we use the Java keyword class. Remember that all the keywords in
Java ave lowercase letters. The class keyword is followed by class name which is Boy in my

examp [e .

According to Java’s convention, every first letter in a word must be a uppercase letter. All the
predefined Java classes follow this convention. Some of the predefined Java classes are:

Object
Exception
Throwable
System
PrintStream
Scanner
StringTokenizer

In the above example of class Boy, we have three variables: name, address and age. We also
have three methods (functions in C and C++) namely, tellName(), tellAddress() and
te“AgeO.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 5

Core Java Basics Java Programming

]fyou are creating a class, it means that you are creating a new user—dqued type. That class

(type) will be used to create o’qjects ater.

General syntax for declaring a class in Java is as shown below:

class ClassName

{
//Class Members

}

In the above examp[e, the class members are the three variables and the three methods. So,

there are a total of 6 class members in our example of Boy class.
Rules for writing class names or any other 'Ldenﬁﬁers (variable names, method names etc...):

O A name must start with a letter or an underscore (_) or a dollar sign ($). Beginning
the name with a letter is recommended. From second character on wards a name can

contain digits or numbers also.
O White spaces and special symbols like %, @, * are not allowed in the name.

0] L{ppercase characters are distinct ﬁrom lowercase characters. Names are case-

sensitive L.evar is diﬁcerent ﬁrom VAR.

0] Keywords or reserved words can’t be used for names. For examp[e, goto cannot be

used for aname as it is a reserved word 'm] ava.

Some valid class names will be:

Student
Contact
UserDetalils
Registration
Marks
Sem2Marks

P.S. Suryateja startertutorials.com [short domain - stuts.me] 6

Core Java Basics Java Programming

_Names
$Product

Some invalid examp les for class names are:

2Inventory (Name cannot start with a number)

User Details (Name cannot contain white spaces)
Cart@Shop (Name cannot contain special symbols)
switch (Keywords cannot be used in names)

Object:

Syntax for creating an object in Java is as shown below:

ClassName object-reference = new ClassName();

An examp[efor creat'mg an O’QJ.CthOV the Boy C[&SS dec[ared above is as S,ﬂOWVl bC[OWI

Object reference

Constructor

|

Boy obj = new Boy();

Keyword

Name of the class

Startertutorials.com

As a[ready denoted in the ﬁgwe, Boy is the name of the class for which we are creating the
object. Remember that objects doesn’t exist without a class. obj is the reference to the object.
The actual object is created by the new operator which is one of the Java’s keywords. The new
keyword creates the object dynamically (at runtime) in the RAM (Random Access Memory)
and returns the reference (address) of the object created. That reference is stored in obj

which will be used to access the object in future.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 7

Core Java Basics Java Programming

The last part of the line is Boy() which is a constructor. For now remember that a
constructor is a method which will have the same name as class name. Constructors will be

explained in detail in a future article.

Above object creation can be separated into two lines as shown below:
Boy obj;
obj = new Boy();

In the ﬁrs’c line, foy defau[t, o’oj Vefers to null. The memory representation of the above two

lines is as shown below:

Code In Memory
obj
Boy obj; —— null
obj
obj = new Boy(); » name
address
age

Startertutorials. com

Aﬂer creating an object using the above syntax, we can access the class members like
variables and methods using the dot () operator or also known as dot separator. So, we can

access the three vavia’o [CS (ﬁe[ds) name, addvess and age as SI’IOWYI be[ow:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 8

Core Java Basics Java Programming

obj.name = “George”;
obj.address = “Los Angels, USA”;
obj.age = 23;

The general syntaxfor access'mg a CL’:LSS mem’oer is as S,/IOWYI IOC[OWI

object_reference.member_name,;
By joining all the pieces together, the complete program will be as shown below:

class Boy
{
String name;
String address;
int age;
void tellName(){ };
void tellAddress(){ };
void tellAge(){ };
public static void main(String[] args)
{
Boy obj = new Boy();
objname = "George';
obj.address = "Los Angels, USA";
obj.age = 23;
System.out.printin("Name of the boy is: "+obj.name);
System.out.printin("Address of the boy is: "+obj.address);

System.out.printin("Age of the boy is: "+obj.age);

}

In lines 15,16 and 17 you can see that there is a + operator in the pvint[n statement. Here, + is

not a addition operator.]fone operand of the + operator is a string, then + behaves as a

P.S. Suryateja startertutorials.com [short domain - stuts.me] 9

Core Java Basics

Java Programming

concatenation operator. So, the Vight side value will be converted into a string and is J'oined

with the [eﬁ side string.

Output of the above program will be:

Name of the boy is: George
Address of the boy is: Los Angels, USA
Age of the boy is: 23

Differences between a class and an object:

Class

Object

1) Class is a collection of similar
objects

2) Class is conceptual (is a
template)

3) No memory is allocated for a
class.

4) Class can exist without any
objects

5) Class does not have any
values associated with the
fields

1) Object is an instance of a
class

2) Object is real

3) Each object has its own
memory

4) Objects can't exist without
a class

5) Every object has its own
values associated with the
fields

Some of the ques’cions related tojava classes and ob jects:

1) Are object references same as pointers in C and C++?

Startertutorials. com

A: Although references are very similar to pointers (both store address of the memory

location), references cannot be manipulated as we can with pointers. In C and C++, one can

P.S. Suryateja

startertutorials.com [short domain - stuts.me]

10

Core Java Basics Java Programming

increment a pointer value or do other operaﬂons on it. Such operations are not allowed on

references in Java.

2) Where are objects created?

A: Objects are created dynamically in the heap area inside RAM (Random Access Memory).

3) Can classes exist without objects?

A: Yes. But vice-verse is not true.

4) What does an instance actually mean?

A: As ahfeady mentioned above, the ﬁe[ds of a class does not contain any values. An object
contains its own value for every field. For example, if we consider the object of Boy class (see
above), the values for the ﬁe[ds name, address and age are: “George”, “Los Ange[s, USA” and
23 Vespective[y. These values are co[[ecﬁve[y known as the state of the o]qject This is why an

o’oject is known as an instance of the class as it has its own values for all the ﬁe[ds.

Comments

inting comments is considered a good programming practice. They will he[p the client

programmers to understand the programs developed ’oy you.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 11

Core Java Basics Java Programming

Java comments can be a single line or multiple lines of text which are written by the
programmers for documentation purpose. A programmer can write comments to mention

the purpose of the program or a part of the program or to provide authorship details.

Need for comments
Fo“ow'mg are some of the famous reasons for writing comments in programs:

O Provide the purpose of the program along with sample input and output of the
program.

O Provide authorship details.
O Mention date and time of creation of the program and when it was last modified.
O Provide details about several parts of the program.

O For generating documentation which will be helpful for other programmers.

Types of comments

In Java, there are three types of comments. They are:
O Single line comments
O Multi-line comments

O javadoc comments

P.S. Suryateja startertutorials.com [short domain - stuts.me] 12

Core Java Basics Java Programming

A s'mg[e line comment as the name 'melies is a comment containing a single line of text. A
s'mg[e line comment starts with //. All the characters aﬁer the // to the end of the line is

treated as a comment. Syntax for single line comment is as shown below:

/l This is a single line comment

To write a comment containing more than one line, we can use a multi-line comment. A
multi-line comment starts with /* and ends with */. Syntax for writing a multi-line comment

is as shown below:

/* Thisis a
multi-line
comment */

We can use a multi-line comment for writing a single line comment as shown below:

[* This is a single line comment. */

Both single line comments and multi-line comments can be written anywhere in the

program.

The third type of comments called javadoc comments can be used to generate HTML
documentation which can be viewed us'mg a browser. This can help the client programmers
to understand the classes that you create. A javadoc comment starts with /** and ends with

*[. Syntax for writing a javadoc comment is as shown below:
/**

*Thisis a

* javadoc comment

*/

Note that * is not necessary before each line of text. It is widely accepted usage of javadoc

comments by Java developers. Generally javadoc comments are written at the top of the

P.S. Suryateja startertutorials.com [short domain - stuts.me] 13

Core Java Basics Java Programming

program. Comments which are written ’oqfore a class declaration are known as header

comments.

We can mention several types of speciﬁc informaﬁon like author name, parameters of a

function, retwrn value of a method and many more using a javadoc comment.

One thing to remember about comments is, they cannot be nested. For example, the

following is a incorrect way of writing comments:

/[This is a //bad single line comment

Every comment started using a beginning marker must be closed with a ending marker.

Foﬂow'mg is an examp e of wrong way of writing comments:
[*

This is

a bad

multi-line
comment /

Note that in the above examp[e, the ending marker should be */.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 14

Core Java Basics Java Programming

Variables

Variable Dgcinition:
A variable is a named location in memory (RAM) to store data.

It is common in programs to store data and process the data to get the Vequ'wed outcome.]f
the data is predetermined (Case 1), for example, you want to add 2 and 3. Here, you know
what to add. But what f the data will be read at runtime (Case 2) or someone else will give

the data for your program. You can’t predict that data.

For Case 2, you have to use variables for storing the data in memory and then process it to

get the output.

Java program for Case 1 will be as shown below:

class Samp[e

{
public static void main(String[] args)
{
System.out.printin("Sum of 2 and 3 is: "+(2+3));
}
}

In the above program you must enclose 2+3 in brackets. Otherwise instead of 5, which is the
expected output, you will get 23 (2 and 3 will be treated as strings and gets concatenated

with each other).

Before [ook'mg at the program fov Case 2, let’s learn how to declare variables and use them.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 15

Core Java Basics Java Programming

Creating or declaring variables in Java:

A variable can be created or declared in Java by using the below syntax:

datatype variable name;

A variablename can be any valid identifier in Java. Before using any variable in a Java
program, you have to declare it first as per the syntax given above. The datatype specifies the
type of value you are going to store in the variable. More on Java data types in another

article. For now, Just think of it as the type of variable.

Example for dec[aring a variable in Java is shown below:

int Xx;

In the above example, int is a Java’s primitive data type and x is the name of the variable.
Initializing variables in Java:

After declaring variables, we can initialize them as shown below:

variable_name = value;

So, we can initialize the variable x as shown below:

x = 10;

Remember that x has been declared as an integer. So, we can store integer values in x. For
initializing a variable, we use the assignment (=) operator. We can combine variable

declaration and initialization into a s'mg[e line as shown below:

int x = 10;

]niﬁa[izing variables with literal values like 10, 2.5, etc... is known as static initialization. We

can also assign an expression to a variable as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 16

Core Java Basics Java Programming

inta = 10;
intb = 20;
int c = a+b;

The expression a+b will be evaluated at runtime (execution of the program) and then it will

be assigned to the variable c. This type of initialization is know as dynamic initialization.

We can declare mu[tip le variables of the same type as shown below:

int Xx,y, z;

Java program for Case 2 shown below will give you an examp[e of how to use variables in

Java:

import java.util Scanner;

class Sample

{

public static void main(String[] args)
{

int x,y;
Scanner input = new Scanner(System.in);
System.out.printin("Enter value of x: ");
X = [nput.nexﬂnt() ;
System.out.printin("Enter value of y: ");
y = input.nextint();

System.out.printn("Sum of x and y is: "+(x+y));

}

In the above program Scanner is a utility class available in java.util package to read data
ﬁfom various sources like standard mnput, ﬁ[es etc... To read nput ﬁrom console (standard

input) we provide System.in as a parameter to the Scanner’s constructor. nextnt() method

P.S. Suryateja startertutorials.com [short domain - stuts.me] 17

Core Java Basics Java Programming

available in the Scanner class returns the 'm]out entered ’oy the user as an 'mteger. The

variables x and y are dynamicaﬂy initialized. Ou’qout of the above program is:

Enter value of x:

10

Enter value of y:

20

Sum of x and y is: 30

Types of variables:

Based on the location where the variable is declared and how it is declared, variables in Java

are divided into three types. They are:
O Instance variables
O Classvariables

O Local variables

Instance Variables: A variable which is declared inside a class and outside all the methods,

constructors and blocks is known as an instance variable.

Class Variables: A variable which is declared inside a class and outside all the methods,

constructors, blocks and is marked as static is known as a class variable. More on static

keyword in another article.

Local Variables: Any variable which is declared inside a class and inside a block, method or a

constructor is known as a local variable.

Following Java example program demonstrates all the three kinds of variables:

class Samp[e

P.S. Suryateja startertutorials.com [short domain - stuts.me] 18

Core Java Basics Java Programming

{
int x,y;
static int result;
void add(int a, int b)
{
X =a
y=b;
int sum = x+y;
System.out.printin("Sum = "+sum);
}
public static void main(String]] args)
{
Sample obj = new Sample();
obj.add(10,20);
}
}

In the above program x and y are instance variables, result is a class variable; a, b, sum and

args are local variables.

One important point to remember is, every o’oject maintains its own copy of each instance

varia]ole and a shared copy ofeach class varia]o [e.

Questions related to variables:
1. What is d'ﬁerence between instantiation and initialization?

A: Instantiation refers to creating an object for the class and initialization refers to assigning

some value to a variable.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 19

Core Java Basics Java Programming

Data Types

A data type specifies the type of value a variable can stove or the type of an expression. Java
is a strongly typed language means that you should specify the type of a variable before

using it in a Java program.

There are eight primitive types in Java namely: byte, short, long, int, float, double, char and

boolean. They can be categorized as shown below:

Mumerical Character Boclean
[char] [boolean]

Startertutorials. com

Also every class and interface existing in Java is also a type (predefined). By creating a class
or an inteqcace, you are creating a user dqﬁned type. Above eight data types are called as
primitive in the sense they are not maintained as objects in memory and they can be used to

create user defined types like classes.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 20

Core Java Basics Java Programming

Java designers has included these eight primitive data types only due to performance

reasons (primitive types are faster). The size and range of values for each primitive data type

is specified below:
byte 8 -128 to 127
short 16 -32,768 to 32,767
int 32 -231to 2311
long 64 -253 to 2%3-1
float 32 1.4e-045 to 3.4e+038
double 64 4.9e-324 to 1.8e+308
char 16 0to 65,535
boolean 1 true or false

Starterfutorials.com

byte: The smallest integer type available in Java is ’oyte. Its size is 8 bits and can store values
within the range -128 to 127. byte data type can be useful while working with a stream of

data over a network or a file. Declaring variables of the type byte is as shown below:

byte a, b;

short: Perhaps the least used integer type in Java is short. 1ts size is 16 bits and it can store
values within the range -32,768 to 32,767. Declaring variables of the type short is as shown

below:

short s;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 21

Core Java Basics Java Programming

int: Most widely used type for working with integers in Java programs is int. Its size is 32 bits
and it can store values within the range -2 billion to +2 billion. Variables of type int are
frequently used in loops and for indexing arvays. Declaring variables of the type int is as
shown below:

inti, j;

long: The size of long integer type is 64 bits and can store up to quite a large range of integer

values. 1t is generally used in programs which work with large integer values. Declaring

variables of the type long is as shown below:

long a, b;

All the four integer types, byte, short, long and int are signed types. In Java, unsigned types

are not supported.

ﬂoat: The type ﬂoat is used to s]oeciﬁ/ a single-precision value that uses 32 bits fov storage.
S'mg[e precision s faster on some Processors and takes habC as much Space as double
precision. The type float is used to work with fractional values where the precision is not that

important. Declaring variables of type float is as shown below:
float f;

double: The type double is used to specify a double-precision value that uses 64 bits of
storage. Double precision is faster on most of the modern processors which are opﬁmized
for mathematical calculations. The type double is used to work with lavgev ﬁ‘actional values
and when the precision of the fractional value is important. Declaring variables of the type

double is as shown below:

double d;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 22

Core Java Basics Java Programming

char: The data type which allows us to store characters is the char type. Unlike C and C++,
the size of char type in Java is 16 ’oits._]ava uses Unicode to represent characters. Unicode

supports most of the international languages, whereas, C and C++ only supports ASCIL.

The char type can also be used to store integer values from o to 65,535. Operators allowed on

integer types are also allowed on char type. Declaring a char type variable is as shown below:

char ch;

boolean: The boolean type in Java is used to store a logical value, either true o false. Size of
boolean is 1 bit. Variables of the type boolean are used in control statements extensively.

Dec[aring avariable of the type boolean is as shown below:

boolean b;

Literals

Every Java primitive data type has its corresponding literals. A literal is a constant value
which is used for initializing a variable or directly used in an expression. Below are some

general examples of Java literals:

Integer literals -> 10, 5, -8 etc...

Floating-point literals -> 1.2, 0.25, -1.999, etc...
Boolean literals -> true, false

Character literals -> ‘a’, ‘A’, ‘N’, ‘'q’, etc...

String literals -> “hi”, “hello”, “What’s up?”

Starteriutorials.com

P.S. Suryateja startertutorials.com [short domain - stuts.me] 23

Core Java Basics Java Programming

Integer Literals:

Integer literals are the most commonly used literals in a Java program. Any whole number
value is an examp[e of an integer literal. For example, 1,10, 8343 are all decimal values i.e., of
base 10. Java also supports other types of integer literals like values of base 8 (octal values)

and base 16 (hexadecimal values).

An octal value contains numbers within the range o to 7. Octal literals in Java are preceded

]oy a zero (0). So, to represent an octal 6 in Java, we should write 06.

An hexadecimal value contains numbers within the range o to 15 in which 10, 11, 12, 13, 14
and 15 will be represented using a, b, ¢, d, e and f or A, B, C, D, E and F respectively.
Hexadecimal literals in Java are preceded on a zero-x (ox or oX). So, to represent an

hexadecimal 99 in Java, we should write oxgg or 0X9g.

]ntegev literals of type [ong should be exp[iciﬂy marked with a lowercase [or an uppercase L
at the end of the integer value. For example 9223372036854775807L is the largest long

value.
New additions in Java SE 7:

In Java SE 7 binary literals were added. Now, programmers are able to assign numbers in
base 2 (binary). A binary literal must be preceded by a zero-b (ob or 0B). For example, to

assign the number 12 in]oinary we will write the literal as obmnoo or oBnoo.

Along with binary literals, one more modification was made to how the literals can be
written. From Java SE 7 onwards, programmers are allowed to specify one or more
underscores (_) between the numbers in nteger literals. For examp le, gc we write 11245 346,

it will be interpreted as 11,245,346. Remember that an underscore can never occur at the

P.S. Suryateja startertutorials.com [short domain - stuts.me] 24

Core Java Basics Java Programming

ioeginning or enoiing of the literal. Muitipie underscores are also supported. For exarnpie we

can write an integer literal as 23 45 which will be interpreted as 2345.

The underscores are oniy for semantic (visual) aid. Tney are ignored ioy the cornpiier. Many
people have the notion of writing a binary number as 4-bit groups. Underscores can help
you to represent a ioinary literal as 4-bit groups. For exarn]oie you can write a ioinary literal

usmg thOtCVSCOVBS as Si’lOWVI thOWI

0b1010 1100 1011 1001

Floating-point Literals:

Floating-point literals are used to represent decimal numbers with a fractional component.
Floating-point literals can be represented in either standard notation or in scientific

notation.

In standard notation, a literal consists of a whole number foiiowed ’oy a decimal point
foiioweoi ioy a ﬁ'actionat component. Examptes of ﬂoating—point literals represented in

standard notation are: 0.234, 435.655, 11.092 etc...

In scientific notation, a literal is represented as a floating-point number followed by an
exponent. The exponent consists of e or E followed by a decimal number. Valid examples of

ﬂoating—point literals representeoi in scientiﬁc notation are: 8.32E4, 0.23e+10, 32.431E-9 etc...

By otefautt a ﬂoating—point literal is treated as a double value. To expiicitiy speciﬁ/ a literal as
float you have to write a f or F at the end of the literal. Valid examples are: 1.55f, 0.24312F etc.
You can expticitiy s]oeciﬁ/ that a literal is of the type double ioy writing a d or D at the end of

the literal. But oioing that is unnecessary.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 25

Core Java Basics Java Programming

As mentioned above in integer literals, fvom Java SE 7 onwards, underscores are also
swpported in ﬂoaﬂng point literals. Underscore can occur in between the digits befove the
decimal point or after the decimal point. Valid example is 1232.2323 87, which will be

interpreted as 1232.232387 by the compiler.

Boolean Literals:

A variable of the type boolean can be initialized with one of the two boolean literals true or
false. The boolean literals are not converted to integers ie., true doesn’t mean 1 and false

doesn’t mean o. Boolean literals can also be used in expressions with boolean operators.

Character Literals:

A character literal in Java is specified in a pair of single quotes. All the visible ASCII
characters can be d'urecﬂy written as ‘a’, X, ‘@’ etc. As per the non-existing characters, you

can use the escape sequences. For examp le, to enter a sing[e quote we will write it as ‘\”. Here,

backslash is used to specify an escape sequence. Similarly to specify a new line, we will write

n'.

We can also specify integers to be stored as values into char variables. Java converts the
integer into corresponding Unicode character. Also, we can specify character literals in octal
and hexadecimal format. We specify octal value as a backslash followed by a three digit
number. For example, \147’ is equivalent to the letter ‘a’. We specify hexadecimal values as a
backslash-u (\u) followed by a four digit number. For example, \uoo61’ represents the letter

<

a.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 26

Core Java Basics Java Programming

String Literals:

Strings cannot be created by using any of the predefined primitive types. Java provides three

class String, StringBuffer and StringBuidler for working with strings in Java programs.

A string literal is a stving constant which can be created us'mg double quotes as shown

below:

“hi”
“hello John”
“"The Game\”

The last string literal contains an escape sequence for double quotes.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 27

Core Java Basics Java Programming

Scope and Lifetime

Scope of a variable quers to in which areas or sections of a program can the variable be

accessed and lifetime of a variable refers to how long the variable stays alive in memory.

General convention for a variable’s scope is, it is accessible only within the block in which it

is declared. A block begins with a left curly brace { and ends with a right curly brace }.

As we know there are three types of variables: 1) instance variables, 2) class variables and 3)

local variables, we will look at the scope and lifetime of each of them now.

Instance Variables:

A variable which is declared inside a class and outside all the methods and blocks is an

instance variable.

General scope of an instance variable is throughout the class except in static methods.

Lifetime of an instance variable is until the object stays in memory.

classSample

{
intx, y; //instance variables
staticint result; SCOpe Of
voidadd(inta, intb) //a and b are local variables
(xandy
X=a;
y=b;
intsum = x+y; //Sum
System.out.println("Sum="+sum);
publicstatic void main(String[] args)
{
Sampleobj = new Sample();
obj.add(10,20);
}

Starteriutorials.com

P.S. Suryateja startertutorials.com [short domain - stuts.me] 28

Core Java Basics Java Programming

Class Variables:

A variable which is declared inside a class, outside all the blocks and is marked static is

known as a class variable.

General scope of a class variable is throughout the class and the lifetime of a class variable is

until the end of the program or as long as the class is loaded in memory.

class Sample
{
intx, y;
staticint result; //Class variable

;midadd{fnta, intb) Scope Of
result

y=Db;
intsum = x+y;
System.out.printin("Sum="+sum);

}

publicstatic void main(String[] args)

{

Sample obj = new Sample();
obj.add(10,20);

Starterfutorials.com

Local Variables:

All other variables which are not instance and class variables are treated as local variables

inc[uding the parameters in a method.

Scope of a local variable is within the block in which it is declared and the lifetime of a local

variable is until the control leaves the block in which it is declared.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 29

Core Java Basics Java Programming

classSample
{ i Scopeofaandb

r)‘.

intx, y;
staticint result;
void add(inta, intb) //a and b are local variables

{

intsum = x+y; //sum is a local variable
System.out.println("Sum = "+sum);

S f
Sample obj = new Sample(); cope of sum

obj.add(10,20);

Startertutorials.com
Nested Scope:

In Java, we can create nested blocks — a block inside another block. In case of nested blocks

what is the scope of local variables?

All the local variables in the outer block are accessible within the inner block but vice versa is
not true ie., local variables within the inner block are not accessible in the outer block.

Consider the following example:

class Sample

{
public static void main(String(] args)
{
int x;
//Begining of inner block
{
int y = 100;
X = 200;

System.out.printin("x = "+x);

P.S. Suryateja startertutorials.com [short domain - stuts.me] 30

Core Java Basics

}

//End of inner block

System.out.printin("x = "+x);

Java Programming

y =200; //Ervor asy is not accessible in the outer block

}

As you can see in the above program, line 14 generates an ervor as the variable y isnot visible

in the outer block and therefore cannot be accessed.

The summary of scope and [ifeﬁme of variables is as shown below:

Summary of scope and
lifetime of variables

Instance variable

Throughoutthe class except in
staticmethods

Untilthe object is availableinthe
memaory

Classwvariable

Throughoutthe class

Untilthe end of the program

Localvariable

Within the block in which it is
declared

Untilthe control leaves the block
inwhich it is declared

P.S. Suryateja

Startertutorials. com

startertutorials.com [short domain - stuts.me]

31

Core Java Basics Java Programming

Methods

Method: A method is a piece of code to solve a parﬁculav task. A method is ana[ogous to
nctions in C and C++. Methods are defined inside a class. The syntax for creating a
syn g

method is as shown below:

Syntax for creating a
method in Java

return_type method_name(parameters list)

{
/Ibody of the method

return value; [optional]

}

Startertutorials.com

The retwrn_type speciﬁes the type of value that will be returned by the method. The name of
the method is specified by method name. Every parameter in the parameters list follows the

below syntax:

datatype parameter_name

The parameters count can be zero or more based upon your requirements. The body of the
method is represented using the braces { and }. Body of the method is also known as the
method defition.

]fa method does not return any value, its return type must be void. A method can return a
sing[e value back by using the retwrn statement. Syntax fov using return statement is as

shown below:

return value;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 32

Core Java Basics Java Programming

As an examp[e, let’s create a method which takes side of a square as parameter and prints

out the area of the square. The method is shown below:

void area(int s)

{

System.out.printin("Area of the square is: "+(s*s));

}
In the above method, s is a parameter and the return of the method is void as the method is

not Vetuming back any value.

Let’s create another method which returns back the pevimetev of the square. The method is

shown below:

int perimeter()

{

return 4*side;
}

In the above method, there are no parameters. The variable side is an instance variable of
the class (see below). The method perimeter returns back an integer value using the return

keyword. So the return type of the method is int.

A method in a class can be called loy creat'mg an o’oject to that class and then use the dot
operator fo“owed by the method name and arguments gC any. Syntax for a method call is as

shown below:

object_reference.method_name(arguments);

Now, let’s look at the entire Java program which contains the class Sqaure a[ong with the

above methods for computing area, perimeter and some other code:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 33

Core Java Basics Java Programming

class Square

{
int side;
void area(int s)
{
System.out-println("Area of the square is: "+(s"s));
}
int perimeter()
{
return 4*side;
}
int getSide()
{
return side;
}
public static void main(String[] args)
{
Square s1 = new Square();
s1.side = 10;
st.area(s.side); //Method call
System.out.println("Perimeter of the square is: "+s1.perimeter()); //Method
call
System.out.printin("Length of the side is: "+s1.getSide()); //Method call
}
}

Output for the above program is:

Area of the square is: 100
Perimeter of the square is: 40
Length of the side is: 10

P.S. Suryateja startertutorials.com [short domain - stuts.me] 34

Core Java Basics Java Programming

A well written Java program is one which contains a set of classes that hides their fields
(instance variables) ﬁ‘om direct access and allows them to be accessed on[y through

methods.

The values passed in a method call are known as arguments and the variables declared in

the method to receive the values from the method call are known as parameters.

Operators

An operator allows the programmer or the computer to perform an operation on the

operands. An operand can be a [iteral, variable or an exjpression.

Operators can be divided along two dimensions: 1) number of operands on which the

operator works and 2) type of operation the operator pe}forms.

Based on number of operands, operators in Java can be divided into three types:
O Unary operator (works on s'mg[e operand)
O Binary operator (works on two operands)
O Ternary operator (works on three operands)

Based on the type of operation pevfovmed, operators are divided into ﬁve categories as

shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 35

Core Java Basics Java Programming

OPERATORS
IN
JAVA

Arithmetic +,-, %, [, %, ++, -, +=, -=, *=, [=, %=

Bitwise ~ &, |, A, 2>, >33, <<, &=, |5, M=, >>=, 3505, <<=
Relational ==, I=, >, €, »>=, <=

Logical & 1Ln | &&, |, == 8=, |= A, 1=, 7

Assignment

Startertutorials. com

Arithmetic operators are frequently used operators in the Java programs. They are used to

perform basic mathematical operations like addition, subtraction, multiplication and

division.
All the arithmetic operators and an example for each of them is provided below:

Arithmetic Operators

+ Addition 10+2 12
- Subtraction 10-2 8
. Multiplication 10*2 20
/ Division 10/2 5
% Modulus (remainder) 10% 2 0
++ Increment a++ (consider a = 10) 11
- Decrement a-- (consider a = 10) 9
+= Addition Assignment a+= 10 (consider a = 10) 20
-= Subtraction assignment a-= 10 (consider a = 10) 0
*= Multiplication assignment a *= 10 (consider a = 10) 100
/= Division assignment a /= 10 (consider a = 10) il
Y%= Modulusassignment a %= 10 (consider a = 10) 0

Startertutorials.com

P.S. Suryateja startertutorials.com [short domain - stuts.me] 36

Core Java Basics Java Programming

1 think that the above table is se[f exp[anatovy. The modulus (%) operator gives the

remainder value of the division.

Let’s focus on the increment (++) and decrement (-) operators. They are both unary
operators, means, they operate on a single operand. Based on whether the increment or
decrement operator is placed ’oefore or agcter the operand, they are divided into two types: 1)
Pre increment or Pre decrement and 2) Post increment or Post decrement. They will look like

as shown below:

++a (Pre increment)

— —a (Pre decrement)
a++ (Post increment)
a — — (Post decrement)

Pre and post increment or decrement have different behaviors when used in assignment

expressions. Their behavior is explained in the below example:

int a,b;
a=10:;

b =a++; //avalue will be assigned to b and then a will be

incremented by 1. So, b value is 10
a=10;
b = ++a; //avalue is incremented by 1 and then assigned to b. So,

b valueis 11

The above example only shown post and pre increment. Similar is the behavior for post and

pre decrement.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 37

Core Java Basics Java Programming

The operators +=, -=, =, [= and %= are known as shorthand assignment operators. All they

do is save you ﬁrom typing two more extra characters.

Consider the fo“owing examp[e which shows you how to use the shorthand assignment

operator:

inta = 10;

a+=2; //[Same aswritihnga=a+ 2

a+=1; // Same as writing a++

Similar is the behavior of other compound assignment operators. Just experiment with

them.

Arithmetic operators work only on numeric types and characters. The char is oviginaﬂy a

sub type of int.

Bitwise Operators
Bitwise operators as the name implies works on bits of the value. These operators can be

applied on integer types and character type.

Every integer value is Ve]oresented as a combination of o’s and 1’s (binary) inside the
memory. For examp[e the 'mteger value 18 of type onte (s Vepresented in memory as shown

below:

00010010

]fyou want to modiﬁ/ the value at bit-level then you can use the bit-wise operators. All the

bit-wise operators and an examp le fov each of them is provided below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 38

Core Java Basics Java Programming

Bitwise Operators

int a =10, b =2 for all examples below

~ Bitwise unary NOT ~a -11
& Bitwise AND a&b 2
| Bitwise OR alb 10
o Bitwise Ex-OR a™b

o> Shift right a=>1

3> Shift right zero fill a=>>1

<< Shift left a=<l 20
&= Bitwise AND assignment a&=b 2
|= Bitwise OR assignment al=b 10
Az Bitwise Ex-OR assignment at=b 8
3= Shift right assignment az»=1

Bem= Shift right zero fill assignment a>s>=1

<<= Shift left assignment acc=1 20

Startertutorials. com

Bitwise logical operators ~, &, | and * operate on two bits as per the table shown below:

Table
for
Bitwise logical operators

B = O O
= O = O
[S = = 1
= O O O
o B r O
O O B -

Startertutorials.com

P.S. Suryateja startertutorials.com [short domain - stuts.me] 39

Core Java Basics Java Programming

Relational Operators

Relational o]oevators are used to compare two values. The result of compaving two values is
a[ways a boolean value true or fa[se. The velational opevators available in Java and an

example for each operator is shown below:

Relational Operators

int a =10, b =2 for all examples below

== Equalsto a==b false
I= Not equalto al=b true
< Less than a<b false
<= Less than or equal to a<=b false
= Greater than a>b true
== Greaterthan or equal to a>=b true

Startertutorials.com

Relational operators are generally used in control statements which will be explained in
another article. Unlike C and C++, true doesn’t refer any positive value other than zero and
false doesn’t refer zero. So, writing while(1) to repeat a loop continuously doesn’t work in

Java even though it works in C and C++.

Logical Operators
Logica[operators are used to evaluate two boolean expressions or values and return the

resultant boolean (truth) value. All the logical operators and an example for each logical

operator s given below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 40

Core Java Basics Java Programming

The [ogical AND, OR, XOR and NOT work in similar fashion as the bitwise AND, OR, XOR
and NOT except that the operands for logical operators are boolean values. The truth table

for the logical operators is given below:

Logical Operators

int a =10, b =2 for all examples below

& Logical AND (a=10) & (b<3) false
| Logical OR (a>10) & (b<3) true
A Logical exclusive OR (XOR) (a>10) & (b<3) true
! Logical NOT a>10 true
&& Short-circuit AND (a>10) & (b<3) false
I Short-circuit OR (a=10) & (b<3) true
== Equalto a==10 True
IS Notequalto al=10 False
&= AND assignment (a=10) & (b<3) false
I= OR assignment (a>10) & (b<3) true
Az XOR assignment (a>10) & (b<3) true
7 Ternary if-then-else (a==10) ? true : false true

Starteriutorials.com

Truth table
for
Logical operators

false false false false false true
false true true false true true
true false true false true false
true true true true false false

Startertutorials. com

P.S. Suryateja startertutorials.com [short domain - stuts.me] 41

Core Java Basics Java Programming

The short-circuit AND (&&) and short-circuit OR (| |) are special operators in Java. Special

in the sense, in the case of short-circuit AND (&&), gC the leﬁ operand evaluates to false, the

), if the left

right operand is not evaluated and is ignored. Similarly for short-circuit OR (

operand evaluates to true, the right operand is not evaluated and is ignored.

Below is an example which demonstrates the use of short-circuit AND (&&) to eliminate a

runtime exeeption caused due to divid'mg a number]oy zero:

if(denom != 0 && num/denom > 10)

{

/Icode

In the above piece of code, if denom !=0 gives false, then the right side expression of && is

not evaluated there by eliminating the chance of exception.

The assignment operator is represented]oy = It is used for assigning a value to a variable as

shown below:

inta = 10;
Conditional Operator
Java provides a special ternary operator that can be used as an replacement for if-then-else

selection statement. The conditional operator is represented as ?:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 42

Core Java Basics Java Programming

The syntax for using the conditional operator is shown below:

expression 1 ? expression 2 : expression 3

Always expression 1 must evaluate to a boolean value. 1f the result of expression 1 is true,
then expression 2 is evaluated or else if expression 1 is false, expression 3 is evaluated and
the resulting value will be retwrned. Consider the following example which demonstrates the

use of conditional or ternary operator:

inta=1,b =1,
int result = (a==1 && b==1) ? 1: 0;

The value stored in result variable will be 1 as the expression a==1&&b==1 evaluates to true.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 43

Core Java Basics Java Programming

Type Conversion and Casting

Type conversion is of types based on how the conversion is performed: 1) Implicit conversion

(also known as automatic conversion or coercion), 2) Explicit conversion (also known as type

casting).
Type Conversion
Implicit Conversion Explicit Conversion
or or
Coercion Casting
Starteriutorials.com
Implicit Conversion or Coercion

This type of conversion is performed automatically by Java due to performance reasons.
Implicit conversion is not performed at all times. There are two rules to be satisfied for the

conversion to take place. They are:
O The source and destination types must be compatible with each other.
O The size of the destination type must be larger than the source type.

For example, Java will automatically convert a value of byte into int type in expressions since
they are both compatible and int is larger than byte type. Since a smaller range type is
converted into a larger range type this conversion is also known as widening conversion.

Characters can never be converted to boolean type. Both are incompatible.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 44

Core Java Basics Java Programming

Explicit Conversion or Casting

There may be situations where you want to convert a value naving a type of size less than the
destination type size. In such cases Java will not ne[p you. You have do it on your own
explicitly. That is why this type of conversion is known as explicit conversion or casting as

the programmer does this manually.

Syntax for type casting is as shown below:

(destination-type) value

An examp e for type casting is shown below:

inta = 10;

byte b = (int) a;

In the above example, lam fovcing an integer value to be converted into a ’oy’ce type. For type
casting to be carried out both the source and destination types must be compaﬁble with

each other. For examp le, you can’t convert an integer to boolean even 90 you fovce it.

In the above example, size of source type int is 32 bits and size of destination type byte is 8
bits. Since we are converting a source type having [arger size into a destination type naving

less size, such conversion is known as narrowing conversion.

A type cast can have unexpected behavior. For examp[e, gC a double is converted into an int,

the ﬁ'acﬂon component will be lost.

Type promotion in expressions

In addition to assignment statements, there is another place where type conversion can
occur. It is in expressions. An expression is a collection of variables, values, operators and

method calls which evaluate to a single value.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 45

Core Java Basics

Type promotion rules of Java for expressions are listed below:

O All char, short and byte values are automatically promoted to int type.

(0]]fa’c least one operand in an expression is a [ong type, then the entire expression will

be promoted to long.

(0]]fat least one operand in an expression is a ﬂoat type, then the entire expression will

be promoted to float.

O If at least one operand in an expression is a double type, then the entire expression

will be promoted to double.

To understand the above type promoﬁon rules let’s consider the fo“owing examp[e of

expression evaluation:

class Sample

{
pubﬁc static void ma'm(String[] args)

{
int i =1000000;
charc="z;
short s = 200;
byte b = 120;
float = 3.45f
double d =1.6780;
double result = (f*b) + (i / ¢) - (d *9);

System.out.printin("Result = "+result);

}
Output of the above program is: Result = 8274.22

P.S. Suryateja startertutorials.com [short domain

- stuts.me]

Java Programming

46

Core Java Basics Java Programming

In the above program the expression is (f* b) + (i / ¢) — (d * s). In the first sub expression (f*
]0), as one opevand (s ﬂoat, the result of the expression will be a ﬂoat In the second sub
expression (i / ¢), char type will be promoted to int and the result of the expression will be

*

an int. In the third sub expression (d *s), as one operand is double, the result of the

expression is a double.

So the results of the sub expressions are ﬂoat, int and double. Since one of them is a double,

the result of the entire expression is promoted to a double.

Expressions

An expression is a construct which is made up of literals, variables, method calls and
operators fo“owing the syntax ofjava. Every expressions consists of at least one operator

and an operand. Operand can be either a literal, variable or a method invocation.

Following (figure in next page) are some of the examples for expressions in Java:

How expressions are evaluated?

1t is common for an expression to have more than one operator. For example, consider the

below example:

(20 * 5) + (10 / 2) — (3 * 10)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 47

Core Java Basics Java Programming

int a = 10; //Assignment expression
System.out.printin("Value = “+x);

int result = a + 10, //Assighment exp
if(val1 <= val2) //Boolean expression

b = a++; //Assignment exp

Expressions are made bold and italic in the above examples

Startertutorials. com

So, how is the above expression evaluated? Expression evaluation in Java is based upon the

following concepts:
O Type promotion rules
O Operator precedence
O Associativity rules

1 have already explained the type promotion rules here. Since all are integer values, there is
no need to worry about type promotion rules here. We will now concentrate on operator

precedence and associaﬁvity rules.

Operator precedence:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 48

Core Java Basics

Java Programming

All the operators in Java are divided into several groups and are assigned a precedence level.

The operator precedence chart for the operators in Java is shown below (figure in next page):

Now let’s consider the fo”owing expression:

10-2*5

One will evaluate the above expression normally as, 10-2 gives 8 and then 8*5 gives 40. But

Java evaluates the above expression dﬁerenﬂy. Based on the operator pveeedenee chart

shown above, * has higher precedence than +. So, 2* 5 is evaluated ﬁrst which gives 10 and

then 10 — 10 is evaluated which gives 0.

Highest
Precedence

W

Lowest
Precedence

++ (postfix), -- (postfix)
++ (prefix), -- (prefix), ~, !, +{unary),
ii’ I"r %

.

>3, »>>, <<

>, >=, <, <=, instanceof

=i

&

A

|
&&

=, op=

-(unary), (type-cast)

Starterfutorials.com

What gC the expression contains two or more operators ﬁ'om the same growp? Such

ambiguities are solved using the associativity rules.

P.S. Suryateja

startertutorials.com [short domain -

stuts.me] 49

Core Java Basics Java Programming

Associativity rules:

When an expression contains operators ﬁom the same group, associativity rules are a]op[ied
to determine which operation should be pevfomed ﬁrst. The associativity rules ofjava are

shown below:

[right-to-left unary

*/ % left-to-right multiplicative
+ - left-to-right additive
<< 5> 5> left-to-right bitwise

D s E s left-to-right relational
== I= left-to-right relational
& left-to-right bitwise

A left-to-right bitwise

| left-to-right bitwise
&& left-to-right boolean

Il left-to-right boolean

(i right-to-left conditional
:: :i::)”:z 922)E= right-to-left assignment
; left-to-right comma

Startertutorials.com

Now, let’s consider the following expression:

10-6+2

In the above expression, the operators + and — both belong to the same group in the
operator precedence chart. So, we have to check the associativity rules for eva[uaﬁng the
above expression. Associativity rule for + and — group s leﬁ—to—vight Le, evaluate the

expression ﬁfom [eﬁ to Y'Lght So, 10-6 is evaluated to 4 and then 4+2 is evaluated to 6.

Use of parenthesis in expressions

Let’s look at our ovigina[expvession examp le:

(20 * 5) + (10 / 2) — (3 * 10)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 50

Core Java Basics Java Programming

You might think that, what is the need of parenthes[s (and) in the above expression. The
reason | had included them is, parenthes is have the highest priority (]mfecedence) over all the

operators in Java.

So, in the above expression, (20%5) is evaluated to 100, (10/2) is evaluated to 5 and (3*10) is

evaluated to 30. Now, our intermediate expression looks like:

100 +5-30

Now, we can apply the associativity rules and evaluate the expression. The final answer for

the above expression is 75.

There is another popular use of parenthesis. We will use them in print statements. For

example consider the following piece of code:

int a=10, b=20;

System.out.printin(*Sum of a and b is: “+a+b);

One might think that the above code will produce the output: “Sum of a and b is: 30”. The

real output will be:

Sum of aand b is: 1020

Why? Because, when one of the operand inside a print statement is a string, the + operator
acts as a concatenation operator. To make it behave as an arithmetic operator we should

enclose a+b is parenthesis as shown below:

int a=10, b=20;
System.out.printin(*Sum of a and b is: “+(a+b));

Now (a+b) is evaluated ﬁrst and then concatenated to the rest.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 51

Core Java Basics Java Programming

Control Statements

What are control statements?

In a Java program, we alveady know that execution starts at main method. The ﬁrst
statement inside the body of main method is executed and then the next statement and so

on. In general, the statements execute one after another in a linear fashion.

What gC we want the statements to execute in a non-linear fashion Le., sk'qo some statements
or repeat a set of statements or select one set of statements among several alternatives based

on the outcome of evaluating an expression or the value of a variable?

To solve the above mentioned problems, every programming language provides control

statements which allow the programmers to execute the code in a non-linear fashion.

Types or categories of control statements in Java

In Java, control statements can be categorized into the following categories:
® Selection statements (if, switch)
® lteration statements (while, do-while, for, for-each)

® Jump statements (break, continue, return)

Selection statements

As the name implies, selection statements in Java executes a set of statements based on the

va[ue ofan expvession or value ofa vaviab[e. A PYOgT ammer can write several ,O[OCIQS ofcode

P.S. Suryateja startertutorials.com [short domain - stuts.me] 52

Core Java Basics Java Programming

and based on the condition or expression, one block can be executed. Selection statements
are also known as conditional statements or]oranching statements. Selection statements

provided by Java are if and switch.
if statement:

The if statement is used to execute a set of statements based on the boolean value returned

by an expression. Syntax of if statement is as shown below:

'Lf(condiﬁon/ expression)
{

statements;

}

1f you want to execute only one statement in the if block, you can omit the braces and write

it as shown below:

'Lf(condiﬁon/ expression)

statement;
In the above syntax, the set of statements are executed only when the condition or

expression evaluates to true. Otherwise, the statement aﬁev the 'Lf’o[oek is executed.

Let’s consider the foUow'mg examp le which demonstrates the use of 'Lfstatement:

inta=10;
if{a < 10)
System.out.printin(“a is less than 10”);

The output for the above]oiece of code will be a blank screen i.e. no output because the

condition a < 10 returns false and the pvint statement will not be executed.

In the above piece of code, instead of displaying nothing when the condition returns false,

we can show an appropriate message. This can be done using the else statement. Remember

P.S. Suryateja startertutorials.com [short domain - stuts.me] 53

Core Java Basics Java Programming

that you can’t use else without using gf statement. By using the else statement our previous

examp [6 now bCCOWIGS anO “OWSI

inta =10;
ifla<10)

System.out.printin(“a is less than 10”);
else

System.out.printn(“a is greater than or equal to 10”);

Nested if statement:

lf you want to test for another condition aﬁer the initial condition available in the gC
statement, it is common sense to write another if statement. Such nesting of one if statement
inside another if statement is called a nested if statement. Syntax of nested if statement is as

shown below:

iflcondition)
{
if{condition)
{
if{condition)
{
}
}
}

We can also combine multiple conditions into a single expression using the logical
operators. As an example for nested if, let’s look at a program for finding the largest of the
three numbers a, b and c. Below we will look at a code fragment which shows logic for

finding whether a is the greatest or not:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 54

Core Java Basics Java Programming

ifla>b)
{
ifla>c)
{
System.out.println(“a is the largest number”);
}
}

As mentioned above we can convert a nested gC into a simp[e gC]oy com’oining mu[t'qo[e

condition into a sing[e condition on using the [ogica[operators as shown below:

ifla>b &&a>c)
{

System.out.printin(“a is the largest number”);

}
if-else-if Ladder:

The if-else-if ladder is a multi-way decision making statement. If you want to execute one
code segment among a set of code segments, based on a condition, you can use the if-else-if

ladder. The syntax is as shown below:

'Lf(condiﬁon)
{
Statements;
}
else if{condition)
{
Statements;
}
else if(condiﬁon)
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 55

Core Java Basics

Statements;
}
else
{

Statements;
}

Java Programming

Looking at the above syntax, you can say that only one of the blocks execute based on the

condition. When all conditions fail, the else block will be executed. As an example for if-else-

if ladder, let’s look at a program for finding whether the given character is a vowel (a, ¢, i, o,

u) or not:

char ch;

ch="¢; //You can also read input from the user

fich —a)
{

System.out.printin(“Entered character is a vowel”);
}
else if(ch=="¢)
{

System.out.printin(“Entered character is a vowel”);
}
else if(ch=="1")
{

System.out.printin(“Entered character is a vowel”);
}
else if(ch=="0")
{

P.S. Suryateja startertutorials.com [short domain - stuts.me]

56

Core Java Basics Java Programming

System.out.printin(“Entered character is a vowel”);

}
else if(ch=="w)

{

System.out.printin(“Entered character is a vowel”);

System.out.printin(“Entered character is not a vowel”);

}
In the above program, the else block serves as a default block that is to be executed in case if

the entered character isnot a, e, i, 0 or u.

switch Statement:

The switch statement is another mu[ti-way decision making statement. You can consider the
switch as an alternative fov 'Lf—e[se—if ladder. Every code segment written using a switch

statement can be converted into an i)‘ielse—ij(‘ladder equiva[ent

Use switch statement only when you want a literal or a variable or an expression to be equal
to another value. The switch statement is simp[e than an equivalent if-e[se-if ladder
construct. You cannot use switch to test mu[t'qo[e conditions using [ogica[operators, which

can be done in if—e[se—if ladder construct. Syntax for switch statement is as shown below:

switch(expression)

{

case [a’oeh:

Statements;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 57

Core Java Basics

break;

case label2:
Statements;
break;

case labels:

Statements;

break;

defau[t:
Statements;

break;
}

Some points to remember about switch statement:

Java Programming

® The expression in the above syntax can be a]oyte, short, int, char or an enumeration.

From Java 7 onwards, we can also use Strings in a switch

® caseisa keywovd use to spec%/ a block of statements to be executed when the value

of the expression matches with the cowesponding label

® The break statement at the end of each case is optional. If you don’t use break at the

end of a case, all the su]osequent cases will be executed until a break statement is

encountered or the end of the switch statement is encountered.

® The dq“au[t block is also opﬁona[. It is used in a switch statement to specify a set of

statements that should be executed when none of the labels match with the value of

the expression. It is a convention to place the deféu[t block at the end of the switch

statement but not a rule.

As an examp e fov switch statement, let’s consider the vowel’s example discussed above:

P.S. Suryateja

startertutorials.com [short domain - stuts.me]

58

Core Java Basics Java Programming

char ch;
ch =W; //You can also read input from the user
switch(ch)
{
case ‘a’:
System.out.printin(“Entered character is a vowel”);
break;
case ‘e’:
System.out.printin(“Entered character is a vowel”);
break;
case ‘"
System.out.printin(“Entered character is a vowel”);
break;
case ‘0"
System.out.printin(“Entered character is a vowel”);
break;
case ‘u:
System.out.printin(“Entered character is a vowel”);
break;
default:
System.out.printin(“Entered character is not a vowel”);

break; //There is no need of this break. You can omit this gf you want

P.S. Suryateja startertutorials.com [short domain - stuts.me] 59

Core Java Basics Java Programming

lteration Statements

While selection statements are used to select a set of statements based on a condition,
iteration statements are used to repeat a set of statements again and again based on a

condition for finite or infinite number of times.

What is the need for iteration statements or looping statements? To answer this, let’s
consider an examp[e. Suppose you want to read three numbers fvom user. For this you
might write three statements for Veading nput. In another program you want to read ten
numbers. For this you write ten statements for reading input. Yet in another program you
want to read ten thousand numbers as nput. What do you do? Even copying and pasting
the statements to read input takes time. To solve this problem, Java provides us with

iteration statements.

lteration statements provided by Java are: for, while, do-while and for-each
while Statement:

while is the simplest of all the iteration statements in Java. Syntax of while loop is as shown

below:

while(condition)

{

Statements;

}

As long as the condition is true, the statements execute again and again. If the statement to
be executed in any loop is only one, you can omit the braces. As the while [oop checks the
condition at the start of the [oop, statements may not execute even once 9C the condition fai[s.

]fyou want to execute the body of a [oop atleast once, use do-while loop.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 60

Core Java Basics Java Programming

Let’s see an example for reading 1000 numbers from the user:
int i;
i=o0;

while(i < 1000)

{
//Code for Veading input...

bt
}

The above [oop works in this way. First i is initialized to zero, then condition i < 1000 is
evaluated which is true. So the statements for reading input are executed and finally i is
incremented by 1 (i++). Again the condition is evaluated and so on. When i value becomes
1000, condition fai[s and control exits the [oop and goes to the next line aﬁev the while

statement.
do-while Statement:

do-while statement is similar to while loop except that the condition is checked after
executing the body of the loop. So, the do-while loop executes the body of the loop atleast

once. Syntax of do-while is as shown below:

do
{

Statements;
while(condition);

This loop is generally used in cases where you want to prompt the user to ask whether
he/she would like to continue or not. Then, based on user’s nput, the ’oody of the loop will

be executed again or else the control quits the [oo]o.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 61

Core Java Basics Java Programming

Let’s consider an example where the body of the [oop will be executed based on the user’s
mnput:
char ch;

do
{

[[Statements;
System.out.printin(“Do you want to continue? Enter Y or N);

//Statement for reading the character from the user
twhile(ch == Y’);

In the above code segment, the body of the do-while [oop executes again and again as [ong

as the user inputs the character Y when prompted.
for Statement:

The for statement might look busy but provides more control than other looping statements.
In a for statement, initialization of the loop control variable, condition and modiﬁ/ing the
value of the loop control variable are combined into a single line. The syntax of for statement

is as shown below:

for(iniﬁaﬁzaﬁon; condition; iteration)

{

Statements;

}

In the above syntax, the initialization is an assignment expression which initializes the loop
control variable and/or other variables. The initialization expression evaluates only once.
The condition is a boolean expression.]f‘che condition evaluates to true, the ’oody of the [oop
is executed. Else, the control quits the loop. Every time after the body executes, the iteration

expression is evaluated. Generally, this is an increment or decrement expression which

P.S. Suryateja startertutorials.com [short domain - stuts.me] 62

Core Java Basics Java Programming

modiﬁes the value of the control variable. All the three parts Le. initialization, condition and

iteration are optiona[.

Let’s consider an examp[e code segment which prints the numbers ﬁrom 1to100:

for('mt i=1;i<=100; i++)

{

System.out.printin(“i = “+1);

}

In the above code segment, int L =11s the initialization expression, i <= 100 is the condition

and i++ is the iteration expression.

We can create an inﬁnitefor [OO]O as SI/IOWW. ’oe [OWZ

for(;;)

{
Statements;
}
for-each Statement:

The for-each statement is a variation of the traditional for statement which has been
introduced in JDK 5. The for-each statement is also known as enhanced for statement. 1t is a
simplification over the for statement and is generally used when you want to perform a
common operation sequentia“y over a collection of values like an array etc... The syntax of

for-each statement is as shown below:

for(type var : collection)
{

Statements;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 63

Core Java Basics Java Programming

The data type of var must be same as the data type of the collection. The above syntax is can
be read as, for each value in collection, execute the statements. Starting ﬁrom the ﬁvst value
in the collection, each value is copied into var and the statements are executed. The loop

executes until the values in the collection completes.

Let’s consider a code segment which declares an array conta'ming 10 values and pr'mts the

sum of those 10 values us'mg a for-each statement:

int[] arvay = {1,2,3,4,5,6,7,8,9,10};
int sum = o;
for('mt x: away)

{

sum += X;

}

System.out.printin(“Sum is: “+sum);
The equiva[ent code segment fov the above code using a fOV [oop is as shown below:
int[] arvay = {1,2,3,4,5,6,7,8,9,10};

int sum = o;

for(int x = 0; x <10; x++)

{

sum += array[x] ;

}

System.out.printin(“Sum is: “+sum);

Nested Loops:

A loop inside another loop is called as a nested loop. For each iteration of the outer loop the

inner loop also iterates. Syntax of a nested loop is shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 64

Core Java Basics Java Programming

outer [oop
{
inner loop
{
Statements;
}
}

Let’s consider an examp[e which demonstrates a nested [oop:

or(inti=o0;i<s;i++)
for(5

{
for(int j = 0;] <= i; j++)
{
System.out.println(“”);
}
}

Output fov the above code segment is:

*

**
*k*k
*kkk

*kkkk

Jump Statements

As the name impﬁes, Jump statements are used to alter the sequentia[ﬂow of the program.

Jump statements supported]oyj ava are: break, continue and return.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 65

Core Java Basics Java Programming

break Statement:

The break statement has three uses in a program. First use is to terminate a case inside a
switch statement, second use to terminate a loop and the third use is,break can be used as a
sanitized version of goto which is available in other languages. First use is already explained

above. Now we will look at the second and third use of break statement.

The break statement is used genera”y to terminate a loop based on a condition. For
examp[e, let’s think that we have written a [oop which reads data ﬁfom a heat sensor
continuously. When the heat level reaches to a threshold value, the loop must break and the
next line aﬂer the loop must execute which might be a statement to raise an alarm. In this
case the [oop will be inﬁnite as we don’t know when the value ﬁfom the sensor will match the

threshold value. General syntax of the break statement inside a loop is shown below:

Loop
{
[[Statements;
if{condition)
break;
//Statements after break;
}

As an example to demonstrate the break statement inside a loop, let’s look at the following

code segment:

for(i=1;i<10; i++)

{
System.out.println(i);
fli =)
break;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 66

Core Java Basics Java Programming

!
Output fov the above code segment (s:

O~ owWNPEF

When used inside a nested [oop, break statement makes the ﬂow of control to quit the inner

[oop on[y and not the outer [oop too.

Another use of the break statement is, it can be used as an alternative to goto statement
which is available in other programming languages like C and C++. General syntax of break

label statement is as shown below:

labeb:
{
Statements;
labels:
{
Statements;
if{condition)
break labels;
}
Statements;
}

In the above syntax, when the condition becomes true, control transfers ﬁrom that line to the
line which is available aﬁer the block labeled label. This form of break is genera“y used in

nested loops in which the level of nesting is high and you want the control to jump from the

P.S. Suryateja startertutorials.com [short domain - stuts.me] 67

Core Java Basics Java Programming

inner most loop to the outermost [oop. This fovm of break can be used in all [oops or in any

other block. Syntax for writing a [abel is, any valid 'Ldenﬂﬁer fo”owed ’oy a colon ().
continue Statement:

Unlike break statement which terminates the [oop, continue statement is used to skip rest of
the statements after it for the curvent iteration and continue with the next iteration. Syntax

of continue is as shown below:

Loop
{
[[Statements;
if(condition)
continue;
/[Statements aﬁer continue;
}

Like break statement, continue can also be used inside all loops in Java.

As an examp[e to demonstrate the continue statement inside a loo]o, let’s look at the

fo“owing code segment:

for(i =1i<5; i++)

{
ifli==3)
continue;
System.out.println(i);
}
Output fov the above code segment is:
1
2

P.S. Suryateja startertutorials.com [short domain - stuts.me] 68

Core Java Basics Java Programming
4

5

When the value of i becomes 3, continueis executed and the print statement gets sk'qoped.

return Statement:

The retwrn statement can on[y be used inside methods which can return control or a value
back to the calling method. The return statement can be written at any line inside the body
of the method. Common convention is to write the return statement at the end of the

method’s body. Let’s consider a small example to demonstrate the use of return statement:

void fact(in’c n)

{
if{n == o) return 1
else if{n == 1) return ;

else return fact(n)”fact(nq) ;

Arrays

An array is a set of homogeneous variables sharing the same name. Homogeneous in the
sense, all the elements in the array must be of the same data type. All the elements of an
array are stored side—by—side in the memory. Arrays are geneva“y used when there is a need
to manipulate a set of logically related data elements. Individual elements of an array are
Vefewed using an index value or also known as su]oscript The index value of an array always

starts ﬁ/OWl zero.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 69

Core Java Basics Java Programming

One-Dimensional Arrays

An array can be one-dimensional, two-dimensional or multi-dimensional. Creation of a one-
dimensional arvay is a two step process. First, we have to create an array variable and

second; we have to use the new operator to allocate memory for the array elements.

Syntax for declaring an arrvay variable is as shown below:

data-type array-name] |;

Example for dec[ar'mg an array is shown below:

inta[J;

In the above example, int is the data type and a is the array name. One pair of square

brackets ([]) indicates that the array is one-dimensional.

Syntax for allocating memory for the arvay elements is as shown below:

array-name = new data-type[size];

Example for a[[ocaﬁng memory fov the array elements is shown below:

a = new int[10];

In the above examp[e, new is a keyword which allocates memory for 10 elements of the type

int. In Java, all the arrays are allocated memory dwamica“y at runtime.

Two steps for creaﬁng an array can be combined into a s'mg[e step as shown below:

int a[] = new int[10];

A.'rray Tnitialization: Assigning values into arvay locations is known as array initialization.
Away initialization can be static or dynamic. Static initialization involves specgs/ing values

at the time of declaring an array as shown below:

inta[] ={1,2,3,4,5,6,7,8,9,10};

P.S. Suryateja startertutorials.com [short domain - stuts.me] 70

Core Java Basics Java Programming

When the above line is executed, an array of size 10 is created by JVM as shown in the below

ﬁgwe .

One-Dimensional Array

Position Numbers

L 1 2 3 4 51 6 T 8 9 10 J
a 2 5 6 7 8 9 10
1

b
oo
s
o
]
-1
oo
0w
]

!

Index Numbers

Startertutorials. com

Note that, position of 1 in the array is 1, whereas index or subscript of element 1 is 0. In

genera[, the index or svdoscr'qot of Nth element is N-1.

Dynamic initialization involves assigning values into an array at runtime. Fo“owing code

segment demonstrates dynamic initialization of arrays:

int a[] = new int[10];
Scanner input = new Scanner(System.in);
for(inti=o0;i<10;i++)
{
System.out.printin(“Enter element number “+(i+1)+” :);

a[i] = inputnextint();

P.S. Suryateja startertutorials.com [short domain - stuts.me] 71

Core Java Basics Java Programming

Note: By dqcau[t, when an array is created, all the elements of numeric type are initialized to
zero, all elements of boolean type are initialized to fa[se, all elements of type char are

initialized to \uoooo’ and all reference types are initialized to null.
Accessing Array Elements:

Individual elements of an array can be accessed using the index or subscript. In Java, the
su]oscvipt a[ways begins at zero. So, the ﬁrst element of an array a can be accessed as a[o]

and second element with a[1] and so on Nth element can be accessed with a[N-1].

Two-Dimensional Arrays

A two-dimensional array can be indicated ’oy speciﬁ/ing two pairs of square brackets ([])

while declaring an array. A two-dimensional array can be created as shown below:

inta[][] = new int[3][3];

Above line creates an array with 3 rows and 3 columns (matrix) with a size of 3*3 = 9. So, the

above array a is capable of storing 9 integer elements.

We can also declare a two-dimensional array by specifying only the number of rows as

shown below:

inta[][] = new int[3][];

We can S]OBC:Lﬁ/ the VLI/U’YIIOBV OfCO[UU’VlYleOV each Yow as S’/lOWYl bC[OWI

a[0] = new int[3];

a[l] = new int[3];

a[2] = new int[3];

So, by looking at the above example, we can say that a multi-dimensional array (2-D, 3-D, ..,
N-D) is an arvay of arrays.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 72

Core Java Basics Java Programming

The above way of declaration can be used to create uneven arrays which contain unequa[

number OfCO [MWIVLSfOY C&C’/‘L Tow. SMCI"[klﬂd ofaways is a[so ’/{VLOVVVL asjagged arrays.

Individual elements of a two-dimensional array can be accessed by speciﬁ/ing both row-

index and column-index as shown in the below figure:

Two-Dimensional Arrays

Rightindex
specifies column

number
s &

Left index zl\ Nty
specifies row \
number \ —~—— | \\
\ [0,0] [0.1] [02]

\[l,D] (1,1] [1,2]

(2,0] [2,1] [2,1]

Alternative Array Declaration Syntax

Java supports another way to declare arrays as shown below:
data-type[] array-name = new data-type][size];
Example for declaring arrays using the above syntax is shown below:
int[] a = new int[10];

You might think what is the need for this alternative way of declaring an array? For
examp[e, you might want to declare three one-dimensional arvays. You can do it using the

conventional syntax like:

inta[], b[], c[];

Instead, you can use the alternative syntax like:

int[] a, b, c;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 73

Core Java Basics Java Programming

Constructors

A constructor is a special method which has the same name as class name and that is used
to initialize the objects (fields of an object) of a class. A constructor has the following

characteristics:
O Constructor has the same name as the class in which it is defined.

O Constructor doesn’t have a return type, not even void.]mp[icit return type for a

constructor is the class name.
O Constructor is genera”y used to initialize the objec’cs of a class.

Syntax for creat'mg a constructor is as shown below:

ClassName([Parameters List])

{

//Code of the constructor
}
Use of Constructors:

A constructor is used for iniﬁaliz'mg (assigning values to ﬁe[ds) the olqjects of a class. Can’t
we use normal methods for 'miﬁaﬁzing the ﬁelds of an o’qject? Why do we require
constructors? To make it clear what is the need for constructors, let’s consider an example of

where we want to develop a Tic-Tac-Toe game as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 74

Core Java Basics Java Programming

To make it simple, let’s not consider how to display graphics. We will consider only the
general details. If you look at the above picture, we have to display a canvas or board (for
examp[e) which contains 3x3 = 9 squares. To d[sp[ay the canvas with g squares, let’s

consider the fo[[owing class deﬁniﬁon:

class TicTacToe
{
Square blockr, blocks, ..., blocko;
/[Other fields
void display()
{
blockr = new Square();
blockr.createBlock();
//Code for rest of the 8 blocks, blocks, blocks, .., blockg
//Code to arrange the blocks as a 3x3 matrix
}
//Other code

}

The Square class will be something as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 75

Core Java Basics Java Programming

class Square

{
int side;
void createBlock()
{
sidle = 4;
/[Code for creating square
}
}

The driver program (which executes our [ogic classes) will be as shown below:

class Game
{
public static void main(String[] args)
{
TicTacToe board = new TicTacToe();
board.display();
//Other code
}

}
]fyou look at the above program, the task of display() method is to create g square blocks by

internally calling createBlock() method of Square class. This whole process can be seen as
initializing the board. Every time, when someone wants to play the game, the board has to
be initialized (square blocks have to be created and disp[ayed to the user). To make the
initialization process simple, constructors have been introduced whose sole purpose is to
initialize the object. Now, let’s modify our previous classes to include constructors. The code

is shown below:
class TicTacToe

P.S. Suryateja startertutorials.com [short domain - stuts.me] 76

Core Java Basics

{
Square block, blocks, ..., blocko;
//Other fields
TicTacToe()
{
block: = new Square();
//Code for rest of the 8 blocks, blockz, blocks,
//Code to arrange the blocks as a 3x3 matrix
}
//Other code
}

The Square class will be as shown below:

class Square

{
int side;
Square()
{
side = 4;
//Code for creating square
}
}

... blockg

Java Programming

The driver program (which executes our [ogic classes) will be as shown below:

class Game

{

public static void main(String([] args)

{
TicTacToe board = new TicTacToe();
/[Other code

P.S. Suryateja startertutorials.com [short domain - stuts.me]

77

Core Java Basics Java Programming

}
]fyou look at the above code, the methods disp[ay() and createBlock() are gone. Remember

that initialization might not be only simply assigning values to the fields of an object. The
purpose of a constructor is to initialize the o’qjects such that they will be Veady to be used in

our program like the board objec’c in above program.
Constructor Invocation:

A constructor is invoked (called) automaﬁca“y whenever an object is created using the new
keyword. For example, in the above example, new TicTacToe() calls the constructor of
TicTacToe class. If no constructor has been defined, Java automatically invokes the default

constructor which initializes all the ﬁe[ds to their dg(‘au[t values.

Types of Constructor:

Based on the number of parameters and type of parameters, constructors are of three types:
O Parameter less constructor or zero parameter constructor
O Parameterized constructor
O Copy constructor

Parameter less constructor: As the name impﬁes a zero parameter constructor or parameter
less constructor doesn’t have any parameters in its signature. These are the most frequently
found constructors in a Java program. Let's consider an example fov zero parameter

constructor:

class Square

{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 78

Core Java Basics Java Programming

int side;
Square()

{
side = 4

}

In the above examp[e, Sqaureo is a zero parameter or parameter less constructor which

initializes the side of a square to 4.

Parameterized constructor: This type of constructor contains one or more parameters in its
signature. The parameters receive their values when the constructor is called. Let’s consider

an example for parameterized constructor:

class Sqaure

{
int side;
Square(int s)
{
side = s;
}
}

In the above examp le, the Squaveo constructor accepts a sing[e parameter s, which is used to

initialize the side of a square.

Copy constructor: A copy constructor contains atleast one parameter of reference type. This
type of constructor is genera”y used to create copies of the existing o’ojects. Let’s consider an

examp e for copy constructor:

class Sqaure

{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 79

Core Java Basics

int side;
Square()

{
side = 4

}

Square(SquaVe origina[) //This is a copy constructor

{

side = original.side;

}

Now let’s an examp le which covers all three types of constructors:

class Square

{
int side;
Square()

{
side = 4

}

Square(int s)

{

side = s;

}

Square(Square original)

{

side = origina[.side;

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

80

Core Java Basics Java Programming

The driver program is shown below:

class SquareDemo
{
public static void main(String[] args)
{
Sqaure normal = new Sqaure(); //Invokes zero parameter constructor
Square original = new Sqaure(8); //Invokes single parameter constructor
Sqaure duplicate = new Square(original); //Invokes copy constructor
System.out.printin(“Side of normal square is: “+normal.side);
System.out.printin(“Side of original square is: “+original.side);

System.out.printn(“Side of duplicate square is: “+duplicate.side);

}
Run the above program and observe the output.

Overloading

One of the way t’mfough which Java supports polymorphism is over[oading. It can be deﬁned
as creating two or more methods in the same class sharing a common name but different
number of parameters or diﬂ%vent types of parameters. You should remember that
over[oading doesn’t depend upon the return type of the method. Since method binding is
resolved at compile-time based on the number of parameters or type of parameters,

overloading is also called as compile-time polymorphism or static binding or early binding.

Why overloading?

P.S. Suryateja startertutorials.com [short domain - stuts.me] 81

Core Java Basics Java Programming

In Java, overloading provides the ability to define two or more methods with the same name.
What is the use of that? For examp le, you want to deﬁne two methods, in which, one
method adds two integers and the second method adds two floating point numbers. If there
iS no over[oad'mg, we have to create two d[ﬁ%rent methods. One for add'mg two integers and
the other for adding two ﬂoaﬁng point numbers. As the underlying purpose of the methods
is same, why create methods with different name? Instead of creating two different methods,

overloading allows us to define two methods with the same name.

Method Overloading:

Cveat'mg two or more methods in the same class with same name but d'gﬁferent number of
pavameters or diﬂ%rent types of parameters is known as method over[oading. Let’s consider

the following code segment which demonstrates method overloading:

class Addition
{
void sum(int a, int b)
{
System.out.printin("Sum of two integers is: "+(a+b));
}
void sum(float a, float b)
{
System.out.printin("Sum of two floats is: "+(a+b));
}

P.S. Suryateja startertutorials.com [short domain - stuts.me] 82

Core Java Basics Java Programming

In the above code segment, the method sum is overloaded. Java compiler decides which
method to call based on the type of the parameters in the method call. For examp[e, gC the

method is called as shown below:
Addition obj = new Addition();
obj.sum(10, 20);

The sum method with two integer parameters will be invoked and the output will be Sum of

two integers is: 30.
If the method s called as shown below:
Addition obj = new Addition();
obj.sum(1.5, 1.2);

The sum method with two ﬂoat parameters will be invoked and the output will be Sum of

two ﬂoats is: 2.7.

Note: 1t should be remembered that]ava automaﬁcaﬂy pelfowns type conversion ﬁfom one
type to another type. So, proper care should be taken while deﬁn'mg overloaded methods.

Constructor Overloading:

As constructor is a special type of method, constructor can also be overloaded. Several
constructors can be defined in the same class given that the parameters vary in each

constructor. As an examp[e fov constructor overloading, let’s consider the fo“owing code
segment:

class Square

P.S. Suryateja startertutorials.com [short domain - stuts.me] 83

Core Java Basics Java Programming

{
int side;
Square(int s)
{
side =s;
//Code to create a square and return it
}
Sqaure(int s, int n)
{
side = s;
/[Code to create n number of squares
}
}

In the above code segment we can see that the constructor Sqawe() is overloaded. One
constructor accepts a single integer parameter and retuns a single square with side s.
Another constructor accepts two integer parameters and retwrns n number of squares each

with side s.

Note: In the above examples 1 have defined only two overloaded methods or constructors.
You can create any number of overloaded methods or constructors based on your

requirements.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 84

Core Java Basics Java Programming

Parameter Passing Techniques

If you have any previous programming experience you might know that most of the popular
programming languages support two parameter passing techniques namely: pass-by-value

and pass-by-reference.

In pass-by—va[ue tecl/mique, the actual parameters in the method call are copied to the
dwmmy parameters in the method deﬁniﬁon. So, whatever changes are pevformed on the
dummy parameters, they are not reflected on the actual parameters as the changes you

make are done to the copies and to the originals.

In pass-by—reference technique, Veference (address) of the actual parameters are passed to
the dwmmy parameters in the method deﬁniﬁon. So, whatever changes are petformed on
the dummy parameters, they are reflected on the actual parameters too as both references

point to same memory locations containing the original values.

To make the concept more simple, let’s consider the fo“ow'mg code segment which

demonstrates pass—’oy—va[ue. This is a program for exchanging values in two variables:

class Swapper

{
int a;
int b;
Swapper(int x, int y)
{
a=x
b=y;
}

void swap(int X, int y)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 85

Core Java Basics Java Programming

{
int temp;
temp = x;
x=y;
y = temp;
}
}
class SwapDemo
{
public static void main(String(] args)
{
Swapper obj = new Swapper(10, 20);
System.out.printin("Before swapping value of a is "+obj.a+" value of b is "+obj.b);
obj.swap(obj.a, obj.b);
System.out.printin("After swapping value of a is "+obj.a+" value of b is "+obj.b);
}
}

Output of the above programming will be:

Before swapping value of a is 10 value of b is 20
After swapping value of a is 10 value of b is 20

A[though values of x and y are intevchanged, those changes are not veﬂected on a and b.

Memory Vepvesentaﬁon of variables is shown in below ﬁgwe:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 86

Core Java Basics Java Programming

Pass-by-Value

After executing Swapper obj = new Swapper(10, 20);

b

20

After executing obj.swap(obj.a, obj.b);

b

20

x[20] v[10]

Even though x and y are interchanged, those changes are not
reflectedona and b.

Let’s consider the fo“owing code segment which demonstrates pass-by—rqfevence. This is a

program fov exchanging values in two variables:

class Swapper

{
int a;
int b;

Swapper(int x, int y)

{
a=x
b=y;
}
void swap(Swapper ref)
{
int temp;
temp = ref.a;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 87

Core Java Basics Java Programming

vefia = refb;

ref b = temp;
}
}
class SwapDemo
{
public static void main(String[] args)
{
Swapper obj = new Swapper(io, 20);
System.out-printin("Before swapping value of a is "+obj.a+" value of b is "+obj.b);
obj.swap(obj);
System.outprintln("After swapping value of a is "+obj.a+" value of b is "+obj.b);
}
}

Output of the above programming will be:

Before swapping value of a is 10 value of b is 20
After swapping value of a is 20 value of b is 10

The changes performed inside the method swap are reflected on a and b as we have passed
the reference obj into ref which also points to the same memory locations as obj. Memory

Vepresentaﬁon of variables is shown in below ﬁgure:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 88

Core Java Basics Java Programming

Pass-by-Reference

After executing Swapper obj = new Swapper(10, 20);

b

20

After executing obj.swap(obj);

obj[}—] 20 a
b

10

Changesare directly performed on a and b as ref and obj
point to the same memory locations.,

Note: In Java, parameters of primitive types are passed by value which is same as pass-by-
value and parameters of reference types are also passed by value (the reference is copied)

Wthl’l is same as pass—by—ref erence. SO, in)ava a“ parameters are passed ’Oy value on[y.

Access Control

Access control is a mechanism, an attribute of encapsulaﬂon which restricts the access of
certain members of a class to speciﬁc parts of a program. Access to members of a class can

be controlled using the access modiﬁers. There are four access modiﬁevs in Java. They are:
(0] pub[ic
O pvotected

0] defau[t

P.S. Suryateja startertutorials.com [short domain - stuts.me] 89

Core Java Basics Java Programming

O private

lfthe member (variable or method) is not marked as either pu]o[ic or protected or private,
the access modiﬁer fov that member will be defau[t. We can apply access modiﬁers to classes
also. Among the four access modifiers, private is the most vestrictive access modifier and
pub[ic is the least restrictive access modiﬁer. Syntax for dec[ar'mg a access modiﬁer is shown

’OC[OWI

access-modifier data-type variable-name;

Example for declaring a private integer variable is shown below:

private int side;

In a similar way we can apply access modifiers to methods or classes although private classes

are [GSS common.

Note: Packages and inheritance will be discussed in another article in future. So, 1 will defer
the exp[anation of pvotec’ced to packages article as pro’cec’ced (s usqﬁt[on[y when there is

inheritance.

Accessibi[ity restrictions of the fow access mod@ﬁevs is as shown below:

Access Modifiers In Java

public Y Y Y Y

protected ! Y Y N
Same Package—Y

default Y Y Other Packages - N N

private Y N N N

Y — Accessible
N — Not Accessible

P.S. Suryateja startertutorials.com [short domain - stuts.me] 90

Core Java Basics Java Programming

What is the use of access modifiers?

As 1 had said above, access modiﬁers are used to restrict the access of members of a class, in
parﬁcu[ar data members (ﬁelds). Let me exp[a'm this thvoughjava code. Let’s consider an

employee class as shown below:

class Emp [oyee

{

int empid,;

String empname;

float salary;

//Methods which operate on above data members
}

By looking at the above code we can say that the access modifier for all the three data
members is default. As members with default (also known as Package Private or no
modiﬁer) access modiﬁer are accessible throughout the package (in other classes), a

programmer might, by mistake, try to make an employee’s salary negative as shown below:
Employee e1 = new Employee();
er.salary = -1000.00;

Although above code is syntactically corvect, it is logically incorrect. To prevent such things
to ha]open, in genera[, all the data members are declared private and are accessible on[y

through pub[ic methods. So, we can modiﬁ/ our Emp[oyee class as shown below:

class Employee

{
private int emp id;

private String emp;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 91

Core Java Basics Java Programming

private ﬂoat sa[ary;
public void setSalary(float sal)

{
if(sal < 0)

{

System.out.printin("Salary cannot be negative");

sa[ary = sal;

1
//Other methods

}
By [ooking at the above code, we can say that one can access the salary ﬁeld on[y through

setSalary() method. Now, we can set the salary of an employee as shown below:
Employee e1 = new Employee();

er.setSalary(-1000.00); //Gives error as salary cannot be negative
er.setSalary(2000.00); //salary of e1 will be assigned 2000.00

The modiﬁed Emp[oyee class is the best way of writing programs in Java.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 92

Core Java Basics Java Programming

this Keyword

this keyword in Java is used to refer current object on which a method is invoked. Using
such property, we can refer the fields and other methods inside the class of that object. The

this keyword has two main uses which are listed below:

1. Tt is used to eliminate am’oiguity between ﬁelds and method parameters having the

same name.
2. Ttisused fov chain'mg constructors.

To exp[ain the ﬁrst use, let's consider the foﬂowing program, which creates a square and

displays it:

class Square

{
int side;
Square(int s)
{
side = s;
//Code to display a square with side s
}
}
class SquareDemo
{
Sqaure s1 = new Sqaure(4);
}

In the above code segment, there are no errors as the field name side and parameter name s

are different. Now, let's modify our Square class as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 93

Core Java Basics

class Sqaure

{
int side;
Square(int side)
{
side = side;
//Code to display a square with side side
}
}
class SquareDemo
{
Sqaure s1 = new Sqaure(4);
}

Java Programming

In the above code segment, observe line no: 6. At this line, JW™M will be in a ambiguous

situation to decide whether to initialize the field side or the parameter side. To eliminate

such ambiguity, the left side variables can be preceded with this keyword as shown below:

class Sqaure

{
int side;
Square(int side)
{
this.side = side;
//Code to display a square with side side
}
}
class SquareDemo
{

Sqaure s1 = new Sqaure(4);

P.S. Suryateja startertutorials.com [short domain - stuts.me]

94

Core Java Basics Java Programming

}
Now, JVM will be able to decide that the leﬁ hand side variable is the ﬁe[d side, and the V'Lght

hand side variable is the parameter side. Some programmers prefer to declare fields and
parameters with different names and other programmers prefer the same names for both

ﬁe[ds and parameters. Which one to practice, is [eﬂ to you.

The second use of this keyword is constructor chaining, which Vefers to the invocation of one
constructor from another constructor. We can call a constructor from another constructor

using this keyword as shown below:

this(param1, paramz2, ..., paramn);

While using the above syntax, the constructor whose signature (number of and type of

parameters) matches, will be invoked.

Note: While invoking another constructor using the this keyword, it should be the furst line
inside the constructor’s deﬁniﬁon. For c[arity regarding this, look at the examp[e given

IOC[OWI

Example on constructor chaining:

class Square

{
int side;
Sqaure()
{

this(4); //demonstrates constructor chaining

/[Code to display a square
}

Square(int s)
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 95

Core Java Basics Java Programming

side = s;
}
}
class SquareDemo
{
Sqaure s1 = new Sqaure(4);
}

In the above program, at line number 6, the second constructor is invoked as it is having a

single integer parameter and 4 is passed to the parameter s which will be assigned to the

field, sidle.

static Keyword

In Java programs, static keyword can be used to create the following:
1. Class variables
2. Class methods

3. Static blocks

Class Variables:

The static keyword is used to create one of the three types of variables called as class
variables. A class variable is a variable declared inside a class and outside all the methods
and is marked as static. Syntax for declaring a class variable or a static variable is shown

below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 96

Core Java Basics Java Programming

static data-type variable-name;

Example for dec[aring a class variable is shown below:

static int id;

What is special about a class variable? As you ab’eady know, an instance variable is created
separately for every object of the class. But a class variable is created only once inside the
memory and the same is shared among all the objects of a class. Consider the following code

segment to demonstrate the difference between instance variables and class variables.

class CSEStudent

{
static int id = 5;
int studid;
String stud name;
}
class StudentDemo
{
public static void main(String[] args)
{
CSEStudent s1 = new CSEStudent();
st1.stud id = 5001;
st.stud name = "John'";
CSEStudent s2 = new CSEStudent();
ststud id = 5002;
st.stud name = "Kevin";
System.out.printin("Branch id is: "+s1.id);
System.out.printn("Branch id is: "+s2.id);
}
}

P.S. Suryateja startertutorials.com [short domain - stuts.me] 97

Core Java Basics Java Programming

Below igure illustrates the d'g‘ference between an instance variable and a class variable in

the above code segmen’c:

Instance Variables Vs Class Variables

sl s2
5001 5002 stud_id

John Kevin stud_name

5 id

* Instance variables are maintained separately for each object
* Class variables are shared among objects and only one copy is available

In the above example:
- stud_idand stud_name are instance variables
- id is a class variable (staticvariable)

Class Methods:

All the non-static methods inside a class are known as instance methods and all the static
methods inside a class are known as class methods. A class method is generally used to

process class variables. A class method has the following limitations:
1. A class method (static method) can access only other class methods.

2. A class method can access only class variables (static variables).

P.S. Suryateja startertutorials.com [short domain - stuts.me] 98

Core Java Basics

3. this and super cannot be used in class methods.

A class method can be created using the following syntax:

static retwrn-type method-name(pavameters-list)

{
[[statements

}

An examp[e for creating a class method is shown below:

static void changelD(int newid)

{
id = newid,;

}

Fo[[owing code segment illustrates the use of class methods in Java:

class CSEStudent

{
static int id = 5;
int stud id;
String stud name;
static void changelD(int newid)
{

id = newid,;

}

}

class StudentDemo

{

public static void main(String[] args)

{
CSEStudent s1 = new CSEStudent();

P.S. Suryateja startertutorials.com [short domain - stuts.me]

Java Programming

99

Core Java Basics Java Programming

s1.stud id = 5001;

st.stud name = "John'";

CSEStudent s2 = new CSEStudent();

ststud id = 5002;

s1.stud name = "Kevin";

System.out.printin("Branch id is: "+s1.id);
System.out.printin("Branch id is: "+s2.id);

st.changelD(2);

System.out.printin("Branch id is: "+s1.id); //Guess the output

System.out.printn("Branch id is: "+s2.id); //Guess the output

Static Blocks:

A static block is a block of statements preﬁxed with static keyword. The syntax for creating a

static block is shown below:

static

{

[[Statements
}
An important property of a static block is, the statements in a static block are executed as

soon as the class is loaded into memory even]oefove the main method starts its execution. A

typica[use of static blocks is iniﬁaﬁzing the class variables.

Fo[[owing program demonstrates the use of static blocks:

class CSEStudent
{

P.S. Suryateja startertutorials.com [short domain - stuts.me] 100

Core Java Basics Java Programming

static int id;
int stud id;

String stud name;

static
{
id = 5;
[/other statements
}
}
class StudentDemo
{
pubﬁc static void main(S‘fring[] avgs)
{
CSEStudent s1 = new CSEStudent();
ststudid = 5001,
s1.stud name = "John";
CSEStudent s2 = new CSEStudent();
s1.stud id = 5002;
s1.stud name = "Kevin";
System.out.printin("Branch id is: "+s1.id);
System.out.printin("Branch id is: "+s2.id);
}
}

Note: Another important property of static keyword is, any class variable (static variable) or
a class method (static method) can be accessed directly without creating an o]oject for the

class using the fo“owing syntax:

ClassName.variablename;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 101

Core Java Basics

or

ClassName.methodname();

Java Programming

This is the reason why the main method is declared as static in every program so that the

JVM can access it directly without creating an object for the class. Following program

demonstrates the alternative syntax for accessing class variables and class methods:

class CSEStudent

{
static int id = 5;
int stud.id;
String stud name;
static void changelD(int newid)
{

id = newid,;

}

}

class StudentDemo

{

public static void main(String(] args)
{
CSEStudent s1 = new CSEStudent();
s1.stud id = 5001;
st.stud name = "John'";
CSEStudent s2 = new CSEStudent();
ststudid = 5002;
s1.stud name = "Kevin";
System.out.println("Branch id is: "+ CSEStudent.id);

st.changelD(2);

P.S. Suryateja startertutorials.com [short domain - stuts.me]

102

Core Java Basics Java Programming

System.out.prinﬂn("Branch id is: "+ CSEStudent.id); //Guess the output

final Keyword

Primary use of the final keyword is to declare constants in Java programs. A constant is like
a variable but, whose value cannot be changed once initialized. Syntax for dedaring a

constant using ﬁna[keywovd is shown below:

final data-type identifier = value;

You should remember that a constant should be initialized at the time of declaration 'ltSCbC.
Once a constant has been initialized, it cannot be modiﬁed later. For examp[e you can

declare a P1 constant as shown below:

final float Pl = 3.14;

]ava’s convention for constant names is that they should be written in uppercase. Below code

segment demonstrates the use of constants (created using final keyword) in a Java
program:

class Circle

{

ﬂoat radius;

final float P1=314;

void displayArea()
{

ﬂoat area;

radius = 2.3;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 103

Core Java Basics Java Programming

area = Pl * radius * radius;

System.out.printin("Area of the circle is: "+area);

}

There are two more uses of ﬁna[keyword which will be discussed in inheritance section.

Garbage Collection

In most of the object oriented programming languages, memory management (allocating
and deallocating memory) is left to the user and it is generally ervor prone (user might
forget to free the memory occupied by an object). Objects are allocated memory in the heap
memory which grows and shrinks dynamically. Java provides automatic memory

management tl'u'ough a mechanism known as garbage collection.

Unused o]ojects are collected for garbage collection ’oy the program known as gavbage
collector. Java has its own set of algorithms which decides whether an object is eligible for
garbage collection or not. Generauy, an o’oject is gar]oage collected when it goes out of scope

or when the ob ject is no [onger referenced.
Garbage Collector

The gar’oage collector ﬁrequent[y scans the heap memory for detecﬁng wnused objects. Two
general methods used by garbage collectors for finding unused objects are: veference

counting and tracing.

In reference counting method, whenever an objeet is created, its referenee count will be 1. As
the o]qjec’c (s Vefevenced ’oy other vefevenees, the Vefevence count will be incremented by 1 for
reference. As the references decrease, the reference count will be decremented. When the

P.S. Suryateja startertutorials.com [short domain - stuts.me] 104

Core Java Basics Java Programming

Veference count (s ﬁna”y 0, the object will be garbage collected. Let’s consider the fo“owing

COO[C segmen’c as an examp [e:

class Square

{
int side;
}
class SquareDemo
{
public static void main(String[] args)
{
Square s1 = new Square();
Square s2 = new Square();
s1=s2;
}
}

Fo“owing memory represen’caﬁon illustrates the Yefevence count for each o]qject:

Square sl = new Square();

E side Ref count=1

Square s2 = new Square();

E side Ref_count=1
| s2 I side Ref_count=1

[This object is eligible for garbage collection]

side Ref _count=0

E side Ref_count=2

P.S. Suryateja startertutorials.com [short domain - stuts.me] 105

Core Java Basics Java Programming

In tracing method, also known as mark and sweep method, the gavbage collector scans the
dynamic memory areas for all the o]qjects. The mark phase marks all the o]ojects which are
being referenced. After the marking is completed, the sweep phase frees the memory

allocated to all other unmarked objects.

The garbage collectors using mark and sweep method uses compaction and copying (related
to operating system memory management). During the sweep phase, the memory might get
fragmented. The garbage collector moves all the fragmented memory towards one end
(compaction) so that the other end contains a free block of memory which can be used by

other code. Any other o’ojects on the other side of the used memory are copied to this side

(copying).

The garbage collector can run synchronously when the program runs out of memory or
asynchronously when the system is idle. The garbage collector is an example of daemon
thread (a thread which runs in the]oackground).

Garbage collector can be explicitly invoked by using System.gc() or Runtime.gc(). Explicit
invocation doesn’t guarantee that unused objects will be garbage collected. 1t is up to Java

Virtual Machine when the unused objects will be actually freed.

Finalization

It is common in Java programs to access files and databases (will be covered in future
articles). It is also common for programmers to open the ﬁ[es and other resources and fovget
to close the connections to those resources. The code which is used to close the connections to

resources like files, databases etc... is known as cleanup code or housekeeping code.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 106

Core Java Basics Java Programming

The cleanup code is generally written in the ﬁna.[(ze() method which belongs to the Object
class, as the ﬁnaﬁze() method is guaranteed to be executed when the o’oject gets cleaned up

from the memory. This process is known as finalization.

Recursion

Recursion is a famous way to solve problems with less lines of code. Many programmers
prefer recursion over iteration as less amount of code is Vequived to solve pro’o[ems using

recursion.

A method calling itself in its defnition (body) is known as recursion. For implementing

recursion, we need to follow the below requirements:
O There should be a base case where the recursion terminates and returns a value.

O The value of the parameter(s) should change in the recursive call. Otherwise, this

leads to inﬁnite loop.

Let’s consider the code for ﬁnd'mg factoria[of a number using iteration as shown below:

int fac’c(in’c n)
{
ntr=m;

for(int i=ni>1;i-)

{

r=i%r
}
return v;

P.S. Suryateja startertutorials.com [short domain - stuts.me] 107

Core Java Basics Java Programming

Now, let’s consider the recursive solution for ﬁnd'mg the factoria[of a given number which is

SI/IOWYI bC[OWZ

int vfac’c(in’c n)
{
ifln==0||n==1)
return 1;
else

return n * rfact(n-1); //recursive call

}

The comp [e’ce] ava program which demonstrates recursion is given below:

class RecursionDemo
{
pubﬁc static void ma'm(StringH args)
{
intn = 6;
System.out.printin("Factorial of " + n + " without recursion is: " + fact(n));
System.out.printin("Factorial of " + n + " using recursion is: " + rfact(n));

}

static int fact(in’c n)

{
intr=r;

for(inti=n;i>1;i-)

r=i"7
}
return r;
}
static int rfact(int n)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 108

Core Java Basics Java Programming

{
fin=o | n ==
return 1;
else
return n * rfact(n-1); //recursive call
}

Command Line Arguments

Sometimes we might want to pass extra information while running a Java program. This
extra informaﬁon passed along with the program name are known as command line

arguments. These command line arguments are separated by white spaces.

Command line arguments can be accessed using the string array specified in the main
ﬁmction’s signature. For example, [fthe array name is args, then the ﬁrs’c command line
argument can be accessed as args[o] and the second command line argument can be

accessed as args[1] and so on.

Let’s look at the following Java program which access two command line arguments, adds

them and displays the result to the user:

class CommandArgs

{

public static void main(String[] args)

{

int x = Integer.parselnt(args[o]);

inty=]ntegev.parse]nt(args [1]);

P.S. Suryateja startertutorials.com [short domain - stuts.me] 109

Core Java Basics Java Programming

int sum =x +y;

System.out.printin("Sum of the command line arguments is: " + sum);

}

Command line arguments are specified as shown in the below screenshot:

e CAWindows\system32\cmd.exe

C:Uzeprs~JP<DesktopXjavac CommandArgs.java

CowUsepssJP-Desktoprjava CommandArgs 5 40
Sum of the command line arguments isz: 45

C:xUszseprs~JP~Desktop>_

Variable Length Arguments

There might be some situations while creating methods, where the programmer might not
know how many arguments are needed in the method definition or how many arguments
are going to be passed at run-time by the user. Prior to Java 5, there were a couple of

WOVk&VOMﬂdeOV t’/llS pvo’o[em ’out was ofl:en comp [ex oY €rror prone.

W'Lthjava 5, & new featwe called varargs was introduced which allows programmers to
specify variable length arguments in the method definition. A method with variable length
arguments is specified as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 110

Core Java Basics Java Programming

return-type method-name(type ... variable-name) { }

In the above method declaration, eU'Lpses (..) represents variable [ength arguments. We can
also specify normal variables along with variable length arguments in the method
deﬁniﬁon. There are two rules that should be fouowed while work'mg with variable length

arguments. They are anOUOWSI

O When normal variables (arguments) are speciﬁed a[ong with variable [engih

arguments, the variable length argument should be the last in the list of arguments.
O One cannot specify more than one variable length argument in a method definition.

Below example Java program demonstrates the use of variable length arguments (varargs):

class VarArgsDemo
{
public static void main(String[] args)
{
VarArgsDemo v = new VarArgsDemo();
v.sum(1);
v.sum(l, 2);
v.sum(i, 2, 3);

}

pub[ic void sum(int ... var)
{
ints = o;
for(int x : var)
S+=X;
System.out.printin("Sum is: " + s);

}
}

P.S. Suryateja startertutorials.com [short domain - stuts.me] 111

Core Java Basics Java Programming

Nested Classes

Java 1.1 added support for nested classes. A class defined as a member of another class
definition is known as a nested class. A nested class can be either static or non-static. The

non-static nested class is known as an inner class.

The enclosing class of an inner class can be called as an outer class. An inner class can
access all the members of an outer class. But the outer class cannot access the inner class
members. Inner classes and anonymous classes (inner classes without a name) are useful in

event handling.

Below Java program demonstrates inner class (non-static nested class):

class Person

{
int age;
String name;
class Details

{
public void showDetails()

{
System.out.printin("Age:

'+ age);
System.out.println("Name: " + name);

}

}

public void show()

{
Details d = new Details();
d.showDetails();

P.S. Suryateja startertutorials.com [short domain - stuts.me] 112

Core Java Basics Java Programming

}

public static void main(String[] args)
{

Person p = new Person();
p-age = 25;

p-name = "surya’;
p-show();

}
}

In the above examp le Details is the inner class and Person is the outer class.

Strings

A string is a collection of characters. In Java, strings can be created using three predefined
classes name[y String, S’cringBuﬁev and StringBui[deV which are available in java.lang

package. Why didjava des igners pVovide three classes fov creating str'mgs?

Each of the above three string classes has their own advantages and disadvantages. If you
want to create an immutable (whose content cannot be changed once created) string, String
class is the best choice. Strings created using StringBuffer and StringBuilder classes are

mutable (content can be changed agcter they are created).

Among StringBuffer and StringBuilder classes, strings created using StringBuffer are
thread safe whereas strings created using StringBuilder are non-thread safe. 1 will explain

about threads in future articles.

Diﬂ%rences between all string classes: String, StringBuﬁer and StV'mgBuildeV are
summarized in the below table:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 113

Core Java Basics Java Programming

Factor / Class String StringBuffer StringBuilder
Mutability Immutable Mutable Mutable

Thread Safety Not thread safe Thread safe Not thread safe

Performance Very high Moderate Very high

Now let’s look at each class in detalil...

String Class

A string can be created in Java using the following alternatives:

String s1 = "This is string s1.";

String s2 = new String("This is string s2.");

In line 2, we are using a String constructor a[ong with the new operator to create the string

explicitly. n line 1, the whole process (creation of string) is done implicitly by JVM.

lf’che content of the new[y created string matches with the existing string (a[ready available
in memory), then a reference to the existing string in the memory is retwrned instead of
ancaﬁng new memory. Since strings created using String are shared, hence ’chey are

immutable as changing the string content using one reference might eﬁ%ct the others.
String Manipulation

As we a[ready know that strings created using String class are immutable, how to

manipulate them? Let us concatenate (join) two strings as shown below:

String str = "hello";

str = str + "world";

P.S. Suryateja startertutorials.com [short domain - stuts.me] 114

Core Java Basics Java Programming

From the above two lines of code, content in str is “helloworld”. How is this possi’o e gc strings
created using String class are immutable. Ac’cua“y what JV™M has done imp[iciﬂy

(automatically) is this:
str = new StringBuffer().append(str).append("world").toString();

Since concatenation is a manipulation, a new StringBuffer object is created and the content
of str which is “hello” is appended to the buffer by using append method and then “world”
is concatenated to “hello” making it “helloworld”. Finally the StringBuffer object is converted
to a String object using the toString. All this process is done automatically by JVM whenever

we try to concatenate two or more S’cring objec’cs.

Now we will [ook at various methods supported by String class for working with strings.

String Methods

The [eng’(h method can be used to ﬁnd the length of given string. Syntax of this method is

given below:

int length()
An examp le of using length method is given below:

String str = "hello";

System.outpvinﬂn(s‘cr. [ength());

The above code prints 5.

The equa[s method can be used to compare whether two strings are having the same content
or not.]f’ooth the strings are same, this method returns true, otherwise, fa[se. Syntax of this

method is given below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 115

Core Java Basics Java Programming

boolean equals(String str)
An examp e of using equals method is given below:

String str1 = "hello";
String str2 = new String("hello");

System.outpvinﬂn(s‘m.equals(strz));

The above code prints true.

The compareTo method can be used to compare whether two strings are having the same

content or not. Syntax of this method is given below:

int compareTo(String str)

This method retuwrns o when both strings are same, retwrns -ve number when the invoking
string is less than the argument string, and +ve number when the invoking string is greater

than the argument s’cr'mg.

An example of using compareTo method is given below:

String str1 = "hello";
String str2 = new String("hello");

System.out.printin(str.compareTo(strz));

Above examp le prints o as both strings are equa[(same content).

AHOH’ICV examp [e OfCOWIp&VCTO method is given ,06 [OWI

String st = "hallo";
String str2 = new String("hello");

System.out.prinﬂn(stﬂ.compareTo(stm));
Above example prints -4 as the difference between ‘a’ in “hallo” and ‘e’ in “hello” is 4 and

“hallo” is the 'mvok'mg string.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 116

Core Java Basics Java Programming

The indexOf method is used to ﬁnd the position (number) of a speciﬁed character in the

invoking string. Syntax of this method is given below:
int indexOf(char c)

An example of using indexOf method is given below:

String str1 = "hello world";

System.out.printin(str1.indexOf{'0"));
Above example prints 4 which the index of first ‘0" in the string “hello world”. Index of a

stving a[ways starts ﬁrom zero.

The overloaded indexOf method is used to ﬁnd the position (number) of a speciﬁed string in

the invoking string. Syntax of this method is given below:
int indexOf(String str)

An example of using indexOf method is given below:

String str1 = "hello world";

System.out.printin(stri.indexOf{"wor"));

Above examp e pr'mts 6.

The [asﬂndexOf method is used to ﬁnd the position (number) of a speciﬁed character ﬁfom

the end of the 'mvoking string. Syntax of this method is given below:

int lastindexOf(char c)

An example of using lastindexOf method is given below:

String str1 = "hello world";

System.out.printin(str1.lastindexOf{'0");
Above example prints 7 which is the position of ‘0’ from the end of the invoking string “hello

world”.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 117

Core Java Basics Java Programming

The overloaded [asﬂndexOf method is used to ﬁnd the position (number) of a speciﬁed

string fvom the end of the invoking string. Syntax of this method is given below:
int lastindexOf(String str)

An example of using lastindexOf method is given below:

String str1="Tam a good and 1 am bad";

System.out.printin(str1.lastindexOf{"am"));

Above example prints 18.

The su]ostring method can be used to extract a sub string fvom the 'mvoking string ﬁfom a

speciﬁed position to the end of the string. Syntax of this method is given below:
String substring(int index)

An example of substring method is given below:

String str1 = "hello world";

System.outprinﬂn(s‘m.subs‘tr'mg(z)) ;

Above example prints “llo world”. The starting index specified in the above example is 2.

The overloaded su]ostring method can be used to extract a sub string ﬁrom the invoking
stv'mg ﬁ‘om a speciﬁed start posiﬂon to end posiﬁon in the s’cr'mg. Syntax of this method is

given below:

String substring(int startindex, int endindex)
An example of substring method is given below:

String str1 = "hello world";

System.out.prinﬂn(stﬂ .su’ostr[ng(G, 9));
Above example prints “wor”. The starting index is 6 and the end index is 9. All the

characters ﬁ'om starﬁng index to exc[uding end index are returned.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 118

Core Java Basics Java Programming

The toLowerCase method can be used to convert all characters in a s’cr'mg to lower case

characters. Syntax (s as given below:

String toLowerCase()
An example of toLowerCase method is given below:

String str1 = "Hello World";

System.out.printin(stri.toLowerCase());

”»

Above example prints “hello world

The toUppeVCase method can be used to convert all characters in a s’cring to upper case

characters. Syntax (s as given below:

String toUpperCase()

An example of toUpperCase method is given below:

String str1 = "Hello World";

System.out.printin(str1.toUpperCase());
Above example prints “HELLO WORLD”.

The startsWith method can be used to check whether the invoking string starts with a

speciﬁed string or not. Syntax of this method is given below:

boolean startsWith(String str)
An examp e of startsWith method is given below:

String str1 = "hello world";

System.out.printin(stri.startsWith("hello"));
Above example prints true since the 'mvoking string “hello world” starts with the speciﬁed

string “hello”.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 119

Core Java Basics Java Programming

Simi[ar[y, endsWith method can be used to ﬁnd out whether a string ends with a speciﬁed

string or not.

The overloaded valueOf method can be used to convert primitive type values like int, ﬂoat,
double etc to a String. Syntax of valueOf method that converts a given int value to a String

value is given below:

static String valueOf(int value)
An examp e of va[ueOf method is given below:

int x =10;
String str = S’cring.va[ueOﬂx) ;
System.out.printin(str);

Above examp e pr'mts 10.

Above mentioned methods are the most frequently used methods of String class. You can

have a look at other methods]oy c[ick'mg the link which is provided above.

Now we will look at the StringBuffer class and some of the methods available in that class.

StringBuffer

As ah'eady mentioned, strings created using StringBuﬁer class are mutable ie., aﬁer
creating a string, we can change the content of the string. Also strings created with
Str'mgBuﬁCeV class are thread safe (1 will cover this aspect in futwe article on

MultiThreading).

Creating Strings using StringBuffer Class

We can use the overloaded StringBuﬁeV constructors as shown below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 120

Core Java Basics Java Programming

StringBuffer sb1 = new StringBuffer();

StringBuffer sb2 = new StringBuffer(30);

StringBuffer sb3 = new StringBuffer("hello");

The first line in the above example creates a empty StringBuffer object with a default
capacity of 16 characters. The second line creates a StringBuffer object with a capacity of 30
characters and the last line creates a StringBuffer object from the supplied string “hello”

and reserves an additional space fov accommodaﬁng 16 characters to reduce reallocation.
Now let’s look at most of the ﬁfequenﬂy used methods available in the StringBuﬁeV class.
StringBuffer Methods

The length method can be used to find the size of a StringBuffer object. Syntax of this

method is given below:

int length()
An examp[e of using length method is given below:

StringBuffer sb1 = new StringBuffer("hello");
System.out.printin(sb.length());

Above examp le prints 5 which is the number of characters (size) in the buﬁer.

The capacity method can be used to find the capacity of a StringBuffer object. Syntax of this

method is given below:
int capacity()
An example of using capacity method is given below:

StringBuffer sb1 = new StringBuffer("hello");
System.out.printin(sb1.capacity());

Above examp le prints 21 which is the capacity (size + 16) of the buﬁer.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 121

Core Java Basics Java Programming

You can use ensuveCapacity and setLeng’(h methods to set the capacity and size of the bu)ﬁfer
Ves]oective[y. Syntax of each of these methods is given below:
void ensureCapacity(int minCapacity)

void setLength(int length)

The charAt method can be used to retrieve a single character fvom a spec[ﬁed posiﬂon.

Syntax of this method is given below:
char charAt(int pos)

An example of using charAt method is given below:

StringBuffer sb1 = new StringBuffer("hello");
System.outpvinﬂn(sb1.charAtG)) ;

Above example prints the character ‘¢’ which is available at the specified position 1.

The setCharAt method can be used to set (change) a character at a spec[ﬁc location in the
buﬁer. Syntax of this method is given below:

void setCharAt(int pos, char ch)

An example of using setCharAt method is given below:

StringBuffer sb1 = new StringBuffer("hello");
sh1.setCharAt(y, 'a');

System.outprinﬂn(sb1) ;

Above examp e prints “hallo”.

The getChaVs method can be used to extract a sub string ﬁfom the buﬁer to a character
array. Syntax of this method is given below:

void getChars(int startindex, int endindex, char target[], int targetStart)

P.S. Suryateja startertutorials.com [short domain - stuts.me] 122

Core Java Basics Java Programming

In the above syntax, startindex is the starting position in the 'mvoking string and endIndex
is the position up to which the characters are extracted p[us one. target is the arvay in to
which the sub string is extracted and targetStart specifies the index in the target array from

which the sub string must be stored.

An example of getChars method is given below:

char(] target = new char[1o];
StringBuffer sb1 = new StringBuffer("hello");
sbr.getChars(o, 3, target, 0);

System.out.printin(target);

Above example prints “hel”.

The append method can be used to concatenate the string representation of different types
of data to the end of a buffer. This method is overloaded. Syntax of this method which

accepts a Str'mg argument is shown below:

StringBuffer append(String str)
An examp[e of this method is given below:

StringBuffer sb1 = new StringBuffer("hello");

System.out.printin(sbr.append("world"));

”»

Above example prints “helloworld

The insert method can be used to insert string representation of diﬁferen’c types of data into
a buﬁer at a speciﬁed position. This method is overloaded like append method. Syntax of
this method for String type is given below:

StringBuffer insert(int index, String str)

An example of using insert method is given below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 123

Core Java Basics Java Programming

StringBuffer sb1 = new StringBuffer("hello");
System.out.printin(sb.insert(s,"world"));

Above examp[e prints “helloworld”. A[though the examp[e inserts the string “world” at the

end of the buffer, it can be inserted at any position you want.

The reverse method can be used to reverse the content of a buffer. Syntax of this method is

given below:

StringBuffer reverse()
An examp e of using reverse method is given below:

StringBuffer sb1 = new StringBuffer("hello");

System.out.printin(sbi.reverse());

”»

Above example prints “olleh

The deleteCharAt method can be used to delete a character at specified location in the

buffer. Syntax of this method is given below:
StringBuffer deleteCharAt(int pos)

An examp e of using deleteCharAt method is given below:

StringBuffer sb1 = new StringBuffer("hello");
System.out.printin(sb1.deleteCharAt(1));

Above examp e prints “hllo”.

The delete method can be used delete a set of characters from the buffer. The starting index
and ending index specifies the set of characters to be deleted. Syntax of this method is given

IOC[OWI

StringBuffer delete(int startindex, int endindex)

An examp e of using delete method is given below:

P.S. Suryateja startertutorials.com [short domain - stuts.me] 124

Core Java Basics Java Programming

StringBuffer sb1 = new StringBuffer("hello");
System.out.printin(sbr.delete(s, 4));

Above example prints “ho”. Characters from index 1to 3 are deleted.

The rep lace method can be used to rep lace a set of characters with a speciﬁed string. The sub
string is specified with starting index and ending index plus one. Syntax of this method is

given below:

StringBuffer replace(int startindex, int endIndex, String str)
An examp e of using rep lace method is given below:

StringBuffer sb1 = new StringBuffer("hello");

System.out.printin(sbi.replace(s, 3, "a"));

Above example prints “halo”.

The substring method can be used to extract a substring from the buffer. This is method is
overloaded. Syntax of this method is given below:

String substring(int startindex)

String substring(int startindex, int endindex)

An example of using substring method is given below:

StringBuffer sb1 = new StringBuffer("hello");
System.outprinﬂn(sb1.substring(1)) ;

Sys’cem.out.pvinﬂn(sb1 .su’ostring(u 4));

In the above example, line 2 prints “ello” and line 3 prints “ell”.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 125

Core Java Basics Java Programming

StringBuilder

The StringBuilder class is similar to StringBuffer class in the sense that both classes contain
same methods. The difference between them is in the case of performance. StringBuilder is
faster than StringBuffer.

P.S. Suryateja startertutorials.com [short domain - stuts.me] 126

