

UNIT - 1
OBJECT ORIENTED PARADIGM

INTRODUCTION TO JAVA

OOP, Introduction to Java Java Programming

Object Orientation Concepts

What is the need to learn about object orientation concepts?

As you have already seen here: introduction to java, Java is an object oriented programming

language. Java follows or is built upon the object oriented paradigm. Generally, every

programming language supports at least one of the programming paradigms.

To understand a Java program and its structure, it is essential to know about the object

orientation concepts.

Structured Paradigm Vs Object Oriented Paradigm

In programming languages following structured paradigm or procedural paradigm

instructions are written in linear blocks or using functions. We can say that in procedural or

structured paradigm, “Code allows access to data”.

In object oriented paradigm, the program is written using objects and classes. A problem

can be solved through interactions between objects. We can say that in object oriented

paradigm, “Data allows access to code”.

Object Oriented Paradigm

The fundamental unit in object oriented paradigm is an object. Let’s look at an object in

detail.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 1

OOP, Introduction to Java Java Programming

Object:

Object is a real world thing or entity that is tangible or intangible. An object consists of

properties and/or behavior. For example consider a student object whose name is John.

Student object contains properties or characteristics like name, age, gender, date of birth etc

and behavior like eat, sleep, register, write exam etc.

A student object can be represented on paper or electronically as shown below. I am using

the industry standard language UML (Unified Modeling Language) for representing the

student object.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 2

OOP, Introduction to Java Java Programming

Class:

It is common for most of the Java programs to have similar objects. Similar means objects

having same properties and behavior. So, a class can be defined as a mold or template for

creating objects. A class can also be defined as a collection of similar objects.

In the above example, the class is the mold (in yellow color) and the object is the paw (blue

color). All the objects (blue color) will have the same size, shape etc.

Considering the above student example, let’s think of three student objects: John, Mary and

Krishna. All of these three students will have similar properties like name, age, gender etc

and similar behavior like register, write exam etc. These three objects can be grouped into a

class named Student. A class can be represented diagrammatically (using UML) as shown

below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 3

OOP, Introduction to Java Java Programming

Now we can represent the class Student and the three objects John, Mary and Krishna of the

class Student as shown below:

By now you will be able to distinguish between an object and a class. There is some more

terminology you must know. Above, I said that object contains properties and behavior. A

property is a characteristic which can be used to describe the object and will generally be a

noun. Behavior is defined as a set of operations that can be performed by the object or on

the object. Operations are generally verbs.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 4

OOP, Introduction to Java Java Programming

Object state:

The set of values assigned to the properties of an object is known as the state of an object.

For example we know that for the John object there are three properties: name, age and

gender. Then, the state of John object will be John, 21 and male which are the values of name,

age and gender respectively.

Messages:

In object oriented world objects don’t sit idle. They communicate with one other by passing

messages. A message is a request to carry out a task. A task can be anything from displaying

a message to retrieving data from database and process it.

An object can send messages to those objects only which can process the messages. For

example, let’s think that an object Ken of Person class wants his dad (John) to purchase

apples for him. To carry out that task Ken sends the message getApples(10) to John. This can

be viewed diagrammatically as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 5

OOP, Introduction to Java Java Programming

It is the responsibility of John object to process the message getApples(10) and give response

back to Ken object. The response message is not mandatory. In the above message

getApples(10), 10 is a parameter. A parameter is a mechanism to pass additional

information along with the message. In the above example, 10 reflects the number of apples

Ken wants.

Object Orientation Principles

Following are the principles of object oriented paradigm (model):

Abstraction

Abstraction is first of the object orientation principles. It is defined as hiding the complex

details and presenting only with the relevant or necessary details. Abstraction is used to

manage complexity while writing programs. Encapsulation and inheritance are used to

implement abstraction while writing programs. Abstraction represents the external

behavior of the object (what the object does) and encapsulation represents how it is

implemented internally by the object.

As a real world example for abstraction let’s consider the car example:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 6

OOP, Introduction to Java Java Programming

When you want to purchase a car, the car dealer gives you the details of available colors,

seating capacity, engine, gearbox, type of steering and other kinds of general details. The car

dealer never tells you specific (complex) details of material being used for the hood, nuts

and bolts and such.

The above details are not needed. These details are hidden by the car dealer. Like this, you

can think of other examples in the real world. Abstraction is everywhere.

Encapsulation

Encapsulation is the fundamental principle to achieve abstraction in object oriented

programming. Abstraction is conceptual and encapsulation is a way to implement

P. S. Suryateja startertutorials.com [short domain - stuts.me] 7

OOP, Introduction to Java Java Programming

abstraction. Wherever you can find abstraction you can say that encapsulation is there but

encapsulation may not always provide abstraction.

Encapsulation is defined as wrapping up or combining the data and code into a single unit.

In the definition data refers to variables and code refers to methods (functions). Every object

contains private data (variables) and public methods which allows other code to access the

private data. Private methods are optional. We can view an object in OOP as shown below:

As a real world example for encapsulation let’s consider a television. We access the television

by using a remote which provides an interface to communicate with the television. Television

manufacturer is hiding its components (data) under the shell and is providing public

interface (remote control) to access its components.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 8

OOP, Introduction to Java Java Programming

In our real world example, television components are analogous to private member variables

and public methods are analogous to buttons on remote control of the television.

Data hiding or information hiding is the side effect of encapsulation. Whenever we use

encapsulation, we are implicitly hiding the data of an object which is known as data hiding.

Encapsulation helps programmers to write code which is extensible.

Note: Don’t worry about variables and methods. I will explain briefly about them in Java

basics section.

Inheritance

Another way to implement abstraction is by using inheritance. In inheritance, classes are

arranged as hierarchies. You might come across situations where even though objects have

similar properties are quite different. In such cases, it is better to move all the common

properties and behavior into one common class and the specific properties and behavior

into special or specific classes.

Inheritance is defined as one object derives or inherits the properties and behavior of

another object. As said above common properties and behavior are moved into a common

class also known as super class or base class or parent class. Specific properties and behavior

are moved into specialized classes also known as sub class or derived class or child class.

As a real world example, consider a child inheriting the properties (land and other assets)

from their parents.

As another example, let’s consider that we are developing a program to work with

geometrical objects like circle, rectangle etc. In the application I can create these objects and

P. S. Suryateja startertutorials.com [short domain - stuts.me] 9

OOP, Introduction to Java Java Programming

perform operations like move, re size etc. These operations are common for all the objects.

So, we can use inheritance in this context. The resultant class hierarchy will be as shown

below:

Inheritance promotes re-usability.

Polymorphism

Polymorphism means many forms. More generally it is defined as one interface multiple

implementations. It means that based on the situation or different factors, the same thing

exhibits multiple behaviors or the same thing can be used to carry out different tasks. Here

thing is used as a general element.

As a real world example for polymorphism, let’s consider the animal Chameleon. This

animal changes its color to reflect the surroundings to hide from its prey. It is really cool!

P. S. Suryateja startertutorials.com [short domain - stuts.me] 10

OOP, Introduction to Java Java Programming

Based on the color of the surroundings the same thing (Chamelon) can change its color

from one to another.

In every well written java program, we can find encapsulation, inheritance and

polymorphism.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 11

OOP, Introduction to Java Java Programming

Java Buzzwords

1) Simple: Java designers built the language in such way that it is very easy to write programs

using Java’s syntax. It also allows experienced programmers who know C and C++ to move

away to Java more quickly since Java’s syntax was derived from C and object orientation

features were derived from C++. If you already know about object orientation principles it

will be much easier to write programs using Java.

2) Object Oriented: Java is a object oriented programming language which allows the users

to solve the given problem in terms of classes and objects. Writing the solution in terms of

classes and objects produces code which is easier to write, maintain and reuse.

3) Robust: Errors in Java programs does not crash the virtual machine or hurt the

underlying operating system. Several built-in Java features help the users to create reliable

programs. Java is a strongly typed language which requires the programmer to declare the

type of a variable before using it. Java also has built-in memory management mechanism

known as garbage collector. Java also provides exception handling to handle runtime errors.

Pointers available in C/C++ are not supported by Java which may lead to memory errors.

4) Multithreaded: Java allows us to create interactive programs, which requires threads.

Multithreading enables a program to carry out multiple tasks at the same time. For

example, consider listening to music and writing something on a piece of paper at the same

time. Java provides multiprocess synchronization primitives so that a programmer can be

free from the worries of providing complex synchronization solutions.

5) Architecture Neutral: Java compiler generates bytecode which when run on any machine

gives the same output. Java’s goal is to enable programmers to develop programs which has

WORA (Write Once, Run Anywhere) property.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 12

OOP, Introduction to Java Java Programming

6) Interpreted: The bytecode generated by the Java compiler goes as input to the Java Virtual

Machine (JVM) which is the runtime engine that interprets bytecode into machine code (0’s

and 1’s) line by line. Interpretation speeds up the development process and simplifies

debugging process.

7) High performance: Many virtual machines use a JIT (Just-In-Time) compiler that converts

the bytecode into platform-specific instructions as the program executes. This helps to

improve the performance of the Java programs.

8) Distributed: Java provides libraries for handling TCP/IP, FTP and other network protocols

which enables programmers to easily develop distributed applications. Java also provides

Remote Method Invocation (RMI) which enables a program to access methods across a

network.

9) Dynamic: Java programs maintain non-trivial amount of run-time type information

which is used to verify and access objects at run time. This allows to dynamically link small

fragments of bytecode during execution of the application.

10) Portable: Portability is achieved through Java’s architecture neutrality and through a

strict definition of the language. For example, Java’s integer primitive type always means a

signed 2’s complement 32-bit integer. Whereas in C/C++, integer can be unsigned and its

size varies according to the system’s register size.

11) Secure: Java’s sandbox security model available in applets prevents the Java program

from accessing the resources of the user’s system. This prevents malicious programs to gain

access to sensitive information available on the user’s system.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 13

OOP, Introduction to Java Java Programming

Evolution of Java

The latest version of Java till date is Java SE 8 (in short version 8) which was released in

March, 2014. The initial version (JDK Alpha and Beta) was released in 1995. Java has made

quite a journey from version 1 to 8. Let’s look in detail what were the improvements or

features added in each version in this article Evolution of Java.

You might think what’s with the character in the above picture and why is it here? Well the

character that you can see above is Java’s mascot Duke.

Before moving into the details of Java’s versions, let’s look at the background details of how

and why Java came into existence.

In 1991, a research group at Sun Microsystems, as a part of their Green project, was working

to develop software to control consumer electronic devices (embedded systems). The goal

was to connect them in a network and establish communication between them. The first

prototype developed by Sun Microsystems was a device called Star 7 which looked like a

remote. The initial intent was to use C++ to control the Star 7. But, as a result of frustration

P. S. Suryateja startertutorials.com [short domain - stuts.me] 14

OOP, Introduction to Java Java Programming

with C++, one of the members of Green project, James Gosling invented a new language

called Oak which was later renamed to Java.

Why the name Oak? Well, as per rumors, there happened to be a Oak tree outside the

window at which James Gosling was working. Hence the name Oak. Later they found out

that there was already a language by the name Oak. So, they renamed it to Java.

Now, let’s look at the version history which is the core of evolution of Java.

The initial version of Java was JDK 1.0 which was released in 1996. Unlike other languages

which evolve in small increments, Java continued to evolve at a faster pace. By the time JDK

1.0 was released, the developers of Java had already created JDK 1.1.

JDK 1.1 was released in 1997. Java 1.1 (JDK 1.1) added many new library elements, redefined

the way events are handled and reconfigured many of the features of the 1.0 library.

The next major release was Java 2 (also known as J2SE 1.2) which was released in 1998. 1.2 is

the internal version number for Java library. With Java 2, Sun repackaged the Java product

as J2SE (Java 2 Platform Standard Edition). Major changes in J2SE 1.2 are:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 15

OOP, Introduction to Java Java Programming

• Introduced Swing framework

• Introduced Collections framework

• Enhancements to JVM and other programming tools.

• Deprecated suspend(), resume() and stop() methods of the Thread class.

The first major upgrade made to the original version Java 2 was J2SE 1.3 which was released

in 2000. This version introduced new APIs like JNDI, JPDA and JavaSound. Although this

version introduced a small set of changes, they are not very important.

Next major upgrade J2SE 1.4 which was released in 2002, further enhanced Java. Several

important features were added in this release. They are:

• Keyword assert

• Chained exceptions

• Channel-based I/O subsystem

• Changes to Collections framework and networking classes

• Logging API

Next release of Java was J2SE 5 which was released in 2004. Compared to other releases this

one was revolutionary. J2SE 5 fundamentally expanded the scope, power and range of the

language. The major improvements and features in this release are:

• Generics

• Annotations

• Autoboxing and auto-unboxing

P. S. Suryateja startertutorials.com [short domain - stuts.me] 16

OOP, Introduction to Java Java Programming

• Enumerations

• Enhanced version of for loop, for-each loop

• Variable length arguments

• Static import

• Formatted I/O

• Concurrency utilities

Next release was Java SE 6 which was released in 2006. Note that Sun changed the name of

the Java platform. The official product name was Java Platform, Standard Edition 6. The

Java Developer’s kit was called JDK 6. The internal developer version number is 1.6. This

version did not add any major features. But, it enhanced the API libraries, added several

new packages and made improvements to the runtime.

Next major release was Java SE 7 (codenamed Dolphin) which was released in 2011 after Sun

Microsystems was acquired by Oracle. Java SE 7 contains many new features and

enhancements which developed as a part of Project Coin. The new features added in version

7 are as follows:

• A String can now control a switch statement.

• Binary integer literals.

• Underscores in numeric literals.

• An expanded try statement, called try-with-resources, that supports automatic

resource management.

• Type inference (using diamond operator) when constructing a generic instance.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 17

OOP, Introduction to Java Java Programming

• Enhanced exception handling

• Compiler warnings associated with some types of varargs methods have been

improved.

Several enhancements were also made in Java SE 7. They are:

Addition of Fork/Join framework for NIO (New I/O) which supports parallel programming.

Upgrade to the Java runtime system that supports non-Java languages.

Next major release is Java SE 8 (unofficially codenamed as Spider) which was released in

2014. Java 8 is a giant step forward for the Java programming language. A lot of features and

enhancements were included. Among them the important ones are:

• Lambda expressions

• Method references

• Default Methods

• A new stream API

• Optional class (java.util package)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 18

OOP, Introduction to Java Java Programming

• A new Date/Time API

• Nashorn, the new JavaScript engine

• Removal of permanent generation (in memory)

With the introduction of Lambdas, method references and default methods on interfaces

Java incorporates support for functional programming without loosing the clarity and

simplicity of Java.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 19

OOP, Introduction to Java Java Programming

Life cycle of a Java Program

Life cycle of a java program tells us what happens right from the point when we type source

code in a text editor to the point that source code is converted into machine code (0’s and

1’s).

There are three main stages in the life cycle of a java program. They are:

• Editing the program

• Compiling the source code

• Executing the byte code

First, you will start with typing the program in a text-editor (ex: notepad, notepad++,

wordpad, textedit etc). After completing editing of the program, we have to save the file.

While saving the file you should remember that the file must be saved with .java extension.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 20

OOP, Introduction to Java Java Programming

For example, let’s think that I had written a Java program which contains a single class

Sample (more on classes in future posts). It is a good convention to save the file with the

name of the class. So, as per my example, the file will be saved as Sample.java.

Second step is compilation. The name of the Java compiler is javac. The input to the compiler

is Java source code which is available in Sample.java. The output of the compiler is machine

independent or platform independent code which is known as bytecode. The file which is

generated after compilation is .class file. As per my example, the bytecode file will be

Sample.class.

Command to compile Java program is: javac filename.java

Last step is execution. The bytecode generated by the compiler will be executed by Java

Virtual Machine (JVM). Input to the JVM is bytecode and output is machine code (0’s and

1’s) which will be executed by the CPU of the local machine.

Command to execute a Java program is: java ClassName

Creating Compiling and Executing a
Java Program

First step is to type the Java source code into a text editor and save it with .java extension.

Type or copy/paste the below code in your favorite text editor.

//Hello World Java Program

class Hello

{

 public static void main(String[] args)

P. S. Suryateja startertutorials.com [short domain - stuts.me] 21

OOP, Introduction to Java Java Programming

 {

 System.out.println("Hello World");

 }

}

Above Java program prints Hello World on to the console (command prompt in Windows).

After typing the above program save the file as Hello.java. Note that file name Hello is same

as the class name. It is good practice to save the file with the same name as class name but is

not mandatory. Let’s assume that the file is saved in the path C:/java. So, full path to the

source file is C:/java/Hello.java.

Next step is to compile the source code file. Open the command prompt (black window) and

navigate to the location C:/java. Type the following command to compile the java file:

javac Hello.java

If there are no errors in the Java program, the program compiles successfully and you will

see the prompt again as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 22

OOP, Introduction to Java Java Programming

After compiling the program, you can see the generated file Hello.class which contains the

bytecode in the location C:/java.

Next step is to execute the program. To execute the program, type the following command

in the command prompt:

java Hello

Take care that .class is not added after the class name Hello.

You can see the output Hello World as shown below:

Alright! Now that we have executed our first Java program, we will look closer at the Java

program to discuss various elements and their use.

Comments

In Line 1, you can see comments. In Java, we can write comments at any line in the program.

There are different types of comments. The one you see in the above program is a single line

comment. A single line comment starts with // followed by anything you want to write.

Comments are useful for writing something which will be useful for the developer or other

users. Remember that Java compiler ignores comments.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 23

OOP, Introduction to Java Java Programming

class Keyword

In Lines 2 to 8, you can see a class declaration. Don’t worry too much about classes. They will

be explained in detail in a separate post. For now remember this. Every Java program must

contain at least one class. A class can be declared in Java by using the class keyword.

main Method

In Lines 4 to 7, you can see the main method. Again, don’t worry too much. The main

method is an entry point for every Java program. For executing a Java program, we have to

write a main method. When JVM executes the bytecode, it searches for the main method and

starts the execution from that line.

System.out.println

It’s normal in a program to do computations, reading data from the user and printing the

results. Reading data from the user in the console window (command prompt) is called

Standard Input and printing/writing data to the console is called Standard Output. In the

above Hello World program, I am printing to the console by using println method which is

provided by the out object of PrintStream class and the out object is made accessible by

System class. Let’s say that whenever we want to print something on to the console, we have

to use System.out.println.

System and PrintStream are predefined classes which are provided by Java. All these

predefined classes come bundled in packages. A package is a group of related classes.

System class is available in java.lang package and PrintStream is available in java.io

package.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 24

OOP, Introduction to Java Java Programming

Java Virtual Machine

Before learning about JVM it is important to know about JDK (Java Development Kit) and

JRE (Java Runtime Environment). Below figure shows the relationship between JDK, JRE,

and JVM:

JDK provides programmers with a set of tools (like javac, debugger, javap, appletviewer etc..)

for developing Java programs. JDK includes JRE.

JRE provides the run-time engine JVM along with the class libraries which contains the

predefined functionality.

Using JDK programmers can create and run Java programs. But with JRE alone,

programmers or users can only run already compiled Java programs. We cannot create Java

programs using only JRE.

Java Virtual Machine (JVM) is an abstract computing machine that allows a computer to

run programs written in Java. There are three concepts related to JVM:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 25

OOP, Introduction to Java Java Programming

• Specification

• Implementation

• Instance

The JVM specification is a document which contains formal information about what a JVM

implementation should contain. A single specification allows various interoperable

implementations.

A JVM implementation is a computer program that meets the requirements given in JVM

specification.

An instance of a JVM is an implementation running in a process that executes bytecode.

Oracle’s implementation of JVM specification is known as HotSpot. Other famous

implementations are JRockit, Kaffe, IBM J9.

Overview of the architecture of JVM is as shown below:

P. S. Suryateja startertutorials.com [short domain - stuts.me] 26

OOP, Introduction to Java Java Programming

Class Loader

A class loader implementation is a program that should be able to perform the following

activities:

• Loading: finds and imports the binary data for a type

• Linking: performs verification, preparation, and resolution (optional)

• Initialization: Invokes Java code that initializes class variables to their proper initial

values

Heap

The heap area of JVM is used for dynamic memory allocation. In HotSpot the heap is divided

into generations:

• The young generation stores objects whose lifetime is short.

• The old generation stores objects which persist for longer durations.

The permanent generation area stores class definitions and other metadata. This area is

removed in Java 8.

P. S. Suryateja startertutorials.com [short domain - stuts.me] 27

